Download Free Structural And Electronic Properties Of Molecular Nanostructures Book in PDF and EPUB Free Download. You can read online Structural And Electronic Properties Of Molecular Nanostructures and write the review.

The Winterschool provides a platform for reviewing and discussing new developments in the field of structural, electronic, and mechanical properties of molecular nanostructures and their applications. Subjects included are: carbon nanotubes, mechanical and electrical properties; carbon nanotubes; structure and functionalization; fullerenes and fullerene derivatives; molecular clusters; polymeric carbon phases; single molecule experiments; chemistry of molecular nanostructures; application of molecular nanostructures; layer-by-layer systems and hybrid materials; biological nanostructures; and molecular machines.
This volume is the latest of the “Kirchberg-Proceedings”. The previous 11 International Winterschools on Electronic Properties of Novel Materials, all held in Kirchberg, Austria, were devoted to conducting polymers, high temperature superconductors, fullerenes, and carbon nanotubes. Fullerenes and nanotubes are still in the center of interest, but the topic of the school and the proceedings is molecular nanostructures in general. The organizers have attempted to treat carbon nanostructures as a special case of molecular nanostructures, which also include silicon clusters, gold clusters, vanadium oxide tubes, and many others. The Winterschool provides a platform for reviewing and discussing new developments in the field of molecular nanostructures and their applications. Materials discussed include fullerenes, fullerene-derived structures, carbonaceous nanotubes, non-carbonaceous nanotubes, layer by layer systems, molecular clusters, new phases of carbon, endohedral compounds and related materials. The book aims to give an overview of the current status of fullerenes, carbon-nanotubes and related molecular nanostructures. The majority of the contributions present the latest results of experiments and calculations conducted in the field. However, about a dozen contain some degree of instructional material which even newcomers will benefit from.
Nanostructures for Novel Therapy: Synthesis, Characterization and Applications focuses on the fabrication and characterization of therapeutic nanostructures, in particular, synthesis, design, and in vitro and in vivo therapeutic evaluation. The chapters provide a cogent overview of recent therapeutic applications of nanostructured materials that includes applications of nanostructured materials for wound healing in plastic surgery and stem cell therapy. The book explores the promise for more effective therapy through the use of nanostructured materials, while also assessing the challenges their use might pose from both an economic and medicinal point of view. This innovative look at how nanostructured materials are used in therapeutics will be of great benefit to researchers, providing a greater understanding of the different ways nanomaterials could improve medical treatment, along with a discussion of the obstacles that need to be overcome in order to guarantee widespread availability. - Outlines how the characteristics of nanostructures made from different materials gives particular properties that can be successfully used in therapeutics - Compares the properties of different nanostructures, allowing medicinal chemists and engineers to select which are most appropriate for their needs - Highlights new uses of nanostructures within the therapeutic field, enabling the discovery of new, more effective drugs
Numerous experiments and calculations have shown that isolated metal clusters possess many interesting features, quite different from those known from surface and solid- state physics or from atomic and molecular physics. The technological exploitation of these new properties, e.g. in miniature electronic or mechanical components, requires the cluster to be brought into an environment such as an encapsulating matrix or a surface. Due to the interaction with the contact medium, the properties of the clusters may change or even disappear. Thus the physics of cluster-on-surface systems -- the main subject of this book -- is of fundamental importance. The book addresses a wide audience, from the newcomer to the expert. Starting from fundamental concepts of adsorbate-surface interactions, the modification of electronic properties through electron confinement, and concepts of cluster production, it elucidates the distinct properties of the new metallic nanostructures.
This volume provides a comprehensive review of the experimental and theoretical aspects of the optical and transport properties of nanoporous silicon, their relation to the microscopic structure of nanocrystals, and the application of porous silicon in optical devices. As porous silicon is an ideal substance for the modelling of optical processes in nanocrystalline materials, this volume also is an excellent reference source on the more general subject of the structural and optical properties of nanocrystalline semiconductors.
Klaus von Klitzing Max-Planck-Institut fur ̈ Festk ̈ orperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany Already many Cassandras have prematurely announced the end of the silicon roadmap and yet, conventional semiconductor-based transistors have been continuously shrinking at a pace which has brought us to nowadays cheap and powerful microelectronics. However it is clear that the traditional scaling laws cannot be applied if unwanted tunnel phenomena or ballistic transport dominate the device properties. It is generally expected, that a combination of silicon CMOS devices with molecular structure will dominate the ?eld of nanoelectronics in 20 years. The visionary ideas of atomic- or molecular-scale electronics already date back thirty years but only recently advanced nanotechnology, including e.g. scanning tunneling methods and mechanically controllable break junctions, have enabled to make distinct progress in this direction. On the level of f- damentalresearch,stateofthearttechniquesallowtomanipulate,imageand probechargetransportthroughuni-molecularsystemsinanincreasinglyc- trolled way. Hence, molecular electronics is reaching a stage of trustable and reproducible experiments. This has lead to a variety of physical and chemical phenomena recently observed for charge currents owing through molecular junctions, posing new challenges to theory. As a result a still increasing n- ber of open questions determines the future agenda in this ?eld.
This volume on Clusters brings together contributions from a large number of specialists. A central element for all contributions is the use of advanced computational methodologies and their application to various aspects of structure, reactivity and properties of clusters. The size of clusters varies from a few atoms to nanoparticles.
Since their discovery, low dimensional materials have never stopped to intrigue scientists, whether they are physicists, chemists, or biochemists. Investigations of their nature and functions have always been and still are numerous and as soon as a solution is found for a given question, another one is raised. The coupling of nano-materials with photonics, i. e. nano-photonics, has produced a boiling pot of idea, problems, discovery and applications. This statement is abundantly illustrated in the present book. The interest in nano-optoelectronic materials and systems is very widespread, what gives a really international and multicultural flavour to nano-optoelectronic meetings. One of them was organized by our-self in May 2000 in Kiev as a NATO Advanced Research Workshop and EC-Spring School. The arrival of the new millennium provides an obvious transition point at which many aspects of nano-science and nano-engineering of nano photonic systems can be assessed with respect to the research progresses made in the pre ceding decades and to the challenges that lie ahead in the coming decades. This book was planed to mark this with the objective of presenting a collection of papers from experts, which provide broad perspectives on the state-of-the-art in the various disciplines of nano science and nano-engineering and on the directions for future research.
Meta-Nanotubes are a new generation of carbon nanotubes (CNTs) which result from the chemical transformation of regular CNTs and their subsequent combination with foreign materials (atoms, molecules, chemical groups, nanocrystals) by various ways such as functionalisation, doping, filling, and substitution. These new nanomaterials exhibit enhanced or new properties, such as reactivity, solubility, and magnetism, which pristine CNTs do not possess. Their many applications include electronic and optoelectronic devices, chemical and biosensors, solar cells, drug delivery, and reinforced glasses and ceramics. Carbon Meta-Nanotubes: Synthesis, Properties and Applications discusses these third generation carbon nanotubes and the unique characteristics they possess. Beginning with a general overview of the subject, this book covers the five main categories of meta-nanotubes, namely: Doped Carbon Nanotubes Functionalised Carbon Nanotubes Decorated or Coated Carbon Nanotubes Filled Carbon Nanotubes Heterogeneous Nanotubes Providing unparalleled coverage of these third generation or meta-nanotubes, and possibilities for future development, this book is essential for anyone working on carbon nanotubes.
The conference focuses on the various applications of DNA for future molecular electronics. The main topics are the characterization of DNA conductivity, modification of DNA in order to generate biotemplated nanowires, and the use of DNA to connect or position other nanostructures such as carbon nanotubes.