Download Free Structronic Systems Smart Structures Devices And Systems In 2 Parts Book in PDF and EPUB Free Download. You can read online Structronic Systems Smart Structures Devices And Systems In 2 Parts and write the review.

This book is concerned with electrostructural systems, particularly the interaction between the control of the structural and electrical (electronic) components. Structronics is a new emerging area with many potential applications in the design of high-performance structures, adaptive structures, high-precision systems, and micro-systems. As structures are increasingly being controlled by electronics, the problems of structural engineering can be separated less and less from those of electronic engineering and control engineering. This graduate-level book fills a gap in the literature by considering these problems while giving an overview of the current state of analysis, modelling and control for structronic systems. It is a coherent compendium written by leading experts in this new research area and gives readers a sophisticated toolbox that will allow them to tackle the modelling and control of smart structures. The inclusion of an extensive, up-to-date bibliography and index makes this volume an invaluable standard for professional reference.Because of the large number of contributions to the present volume, it has been subdivided into two parts, of which this is Part I. This book will be of interest to engineers, materials scientists, physicists and applied mathematicians.The synergistic integration of active (smart) materials, structures, sensors, actuators, and control electronics has redefined the concept of structures from a conventional passive elastic system to an active (life-like) structronic (structure + electronic) system with inherent self-sensing, diagnosis, and control capabilities. Because of its multi-disciplinary nature, the development of structronic systems has attracted researchers and scientists from many disciplines, such as structures, materials, control, electronics, mathematics, manufacturing, electromechanics, and mechanics. In practical applications, this new structronic system can be used as a component of high-performance machines or structural systems, or be an integrated structure itself performing designated function(s).Most common active (smart) materials, such as piezoelectrics, shape-memory alloys, electro- and magneto-strictive materials, and polyelectrolyte gels have been reviewed in Part I. Application examples are also provided and research issues reported on. While the first part focuses primarily on materials and structures, Part II emphasizes control applications and intelligent systems. With the information provided in this two-volume book, scientists and researchers can easily grasp the state of the art of smart materials and structronic systems, and are ready to pursue their own research and development endeavors.
Proceedings of the IUTAM Symposium on Smart Structures and Structronic Systems, held in Magdeburg, Germany, 26-29 September 2000
Two key words for mechanical engineering in the future are Micro and Intelligence. It is weIl known that the leadership in the intelligence technology is a marter of vital importance for the future status of industrial society, and thus national research projects for intelligent materials, structures and machines have started not only in advanced countries, but also in developing countries. Materials and structures which have self-sensing, diagnosis and actuating systems, are called intelligent or smart, and are of growing research interest in the world. In this situation, the IUT AM symposium on Dynamics 0/ Advanced Materials and Smart Structures was a timely one. Smart materials and structures are those equipped with sensors and actuators to achieve their designed performance in achanging environment. They have complex structural properties and mechanical responses. Many engineering problems, such as interface and edge phenomena, mechanical and electro-magnetic interaction/coupling and sensing, actuating and control techniques, arise in the development ofintelligent structures. Due to the multi-disciplinary nature ofthese problems, all ofthe classical sciences and technologies, such as applied mathematics, material science, solid and fluid mechanics, control techniques and others must be assembled and used to solve them. IUTAM weIl understands the importance ofthis emerging technology. An IUTAM symposium on Smart Structures and Structronic Systems (Chaired by U.
Structural control offers opportunities to design new structures and to retrofit existing structures by the application of counter-forces, smart materials, frictional devices, etc., instead of just increasing the strength of the structure at greater cost.The Association for the Control of Structures (ACS) is promoting in Europe the development of this new technology in architectural design and infrastructure renewal and rehabilitation. The First European Conference on Structural Control was organized as one of the major initiatives toward this objective.
Covers the field of EAP with attention to all aspects and full infrastructure, including the available materials, analytical models, processing techniques, and characterization methods. This second edition covers advances in EAP in electric EAP, electroactive polymer gels, ionomeric polymer-metal composites, and carbon nanotube actuators.
This book offers an introduction to piezoelectric shells and distributed sensing, energy harvesting and control applications. It familiarizes readers with a generic approach of piezoelectric shells and fundamental electromechanics of distributed piezoelectric sensors, energy harvesters and actuators applied to shell structures. The book is divided into two major parts, the first of which focuses on piezoelectric shell continua, while the second examines distributing sensing, energy harvesting and control of elastic continua, e.g., shells and plates. The exploitation of new, advanced multifunctional smart structures and structronic systems has been one of the mainstream research and development activities over the years. In the search for innovative structronics technologies, piezoelectric materials have proved to be very versatile in both sensor and actuator applications. Consequently, the piezoelectric technology has been applied to a broad range of practical applications, from small-scale nano- and micro-sensors/actuators to large-scale airplane and space structures and systems. The book provides practicing engineers and researchers with an introduction to advanced piezoelectric shell theories and distributed sensor/energy harvester/actuator technologies in the context of structural identification, energy harvesting and precision control. The book can also be used as a textbook for graduate students. This second edition contains substantial new materials, especially energy harvesting and experimental components, and has been updated and corrected for a new generation of readers.
This book covers the fundamental properties, modeling, and demonstration of Electroactive polymers in robotic applications. It particularly details artificial muscles and sensors. In addition, the book discusses the properties and uses in robotics applications of ionic polymer–metal composite actuators and dielectric elastomers.
Composite structures are most efficient in performance and production cost when combined with smart materials making them adaptable to changing operational conditions. The specific production processes of composites offer the possibility to integrate more functions thus making the structure more valuable. Active functions can be realized by smart materials, e.g. morphing, active vibration control, active structure acoustic control or structure health monitoring. The foundation is a sound understanding of materials, design methods, design principles, production technologies and adaptronics. Along the complete process chain this disciplines together deliver advanced lightweight solutions for applications ranging from mechanical engineering to vehicles, airframe and finally space structures. This book provides the scientific foundations as well as inspiring new ideas for engineers working in the field of composite lightweight structures.
This volume provides useful tools in Lie group analysis to solve nonlinear partial differential equations. Many of important issues in nonlinear wave dynamics and nonlinear fluid mechanics are presented: Homotopy techniques are used to obtain analytical solutions; fundamental problems and theories in classic and quantum dynamical systems are discussed; and numerous interesting results about dynamics and vibration in sensor and smart systems are presented. Interval computation and nonlinear modeling in dynamics and control are also briefly included.