Download Free String Phenomenology 2003 Book in PDF and EPUB Free Download. You can read online String Phenomenology 2003 and write the review.

This book contains a remarkable overview of the current trends in string phenomenology, through the contributions of an international team of researchers who present their latest results. Dedicated to the memory of the late Professor Ian Kogan, this volume will fill a gap in the literature on a comprehensive overview of the subject. The proceedings have been selected for coverage in: . OCo Index to Scientific & Technical Proceedings- (ISTP- / ISI Proceedings). OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). OCo CC Proceedings OCo Engineering & Physical Sciences."
A systematic introduction to string phenomenology, outlining how string theory is connected to the real world of particle physics.
This book attempts to explain why 'string theory' may provide the comprehensive underlying theory that describes and explains our world. It is an enthusiastic view of how compactified string/M-theories (plus data that may be reachable) seem to have the possibilities of leading to a comprehensive underlying theory of particle physics and cosmology, perhaps soon. We are living in a hugely exciting era for science, one during which it may be possible to achieve a real and true understanding of our physical world.
In this thesis, the author describes the development of a software framework to systematically construct a particular class of weakly coupled free fermionic heterotic string models, dubbed gauge models. In their purest form, these models are maximally supersymmetric (N = 4), and thus only contain superpartners in their matter sector. This feature makes their systematic construction particularly efficient, and they are thus useful in their simplicity. The thesis first provides a brisk introduction to heterotic strings and the spin-structure construction of free fermionic models. Three systematic surveys are then presented, and it is conjectured that these surveys are exhaustive modulo redundancies. Finally, the author presents a collection of metaheuristic algorithms for searching the landscape for models with a user-specified spectrum of phenomenological properties, e.g. gauge group and number of spacetime supersymmetries. Such algorithms provide the groundwork for extended generic free fermionic surveys.
String theory is one of the most active branches of theoretical physics and has the potential to provide a unified description of all known particles and interactions. This book is a systematic introduction to the subject, focused on the detailed description of how string theory is connected to the real world of particle physics. Aimed at graduate students and researchers working in high energy physics, it provides explicit models of physics beyond the Standard Model. No prior knowledge of string theory is required as all necessary material is provided in the introductory chapters. The book provides particle phenomenologists with the information needed to understand string theory model building and describes in detail several alternative approaches to model building, such as heterotic string compactifications, intersecting D-brane models, D-branes at singularities and F-theory.
The remarkable recent discovery of the Higgs boson at the CERN Large Hadron Collider completed the Standard Model of particle physics and has paved the way for understanding the physics which may lie beyond it. String/M theory has emerged as a broad framework for describing a plethora of diverse physical systems, which includes condensed matter systems, gravitational systems as well as elementary particle physics interactions. If string/M theory is to be considered as a candidate theory of Nature, it must contain an effectively four-dimensional universe among its solutions that is indistinguishable from our own. In these solutions, the extra dimensions of string/M theory are “compactified” on tiny scales which are often comparable to the Planck length. String phenomenology is the branch of string/M theory that studies such solutions, relates their properties to data, and aims to answer many of the outstanding questions of particle physics beyond the Standard Model.This book contains perspectives on string phenomenology from some of the leading experts in the field. Contributions will range from pedagogical general overviews and perspectives to more technical reviews. We hope that the reader will get a sense of the significant progress that has been made in the field in recent years (e.g. in the topic of moduli stabilization) as well as the topics currently being researched, outstanding problems and some perspectives for the future.
String theory made understandable. Barton Zwiebach is once again faithful to his goal of making string theory accessible to undergraduates. He presents the main concepts of string theory in a concrete and physical way to develop intuition before formalism, often through simplified and illustrative examples. Complete and thorough in its coverage, this new edition now includes AdS/CFT correspondence and introduces superstrings. It is perfectly suited to introductory courses in string theory for students with a background in mathematics and physics. New sections cover strings on orbifolds, cosmic strings, moduli stabilization, and the string theory landscape. Now with almost 300 problems and exercises, with password-protected solutions for instructors at www.cambridge.org/zwiebach.
The past decade has witnessed dramatic developments in the field of theoretical physics. This book is a comprehensive introduction to these recent developments. It contains a review of the Standard Model, covering non-perturbative topics, and a discussion of grand unified theories and magnetic monopoles. It introduces the basics of supersymmetry and its phenomenology, and includes dynamics, dynamical supersymmetry breaking, and electric-magnetic duality. The book then covers general relativity and the big bang theory, and the basic issues in inflationary cosmologies before discussing the spectra of known string theories and the features of their interactions. The book also includes brief introductions to technicolor, large extra dimensions, and the Randall-Sundrum theory of warped spaces. This will be of great interest to graduates and researchers in the fields of particle theory, string theory, astrophysics and cosmology. The book contains several problems, and password protected solutions will be available to lecturers at www.cambridge.org/9780521858410.
String theory is a physical model whose fundamental building blocks are one-dimensional extended objects (strings) rather than the zero-dimensional points (particles) that were the basis of most earlier physics. For this reason, string theories are able to avoid problems associated with the presence of point-like particles in a physical theory. Detailed study of string theories has revealed that they describe not just strings but other objects, variously including points, membranes, and higher-dimensional objects. As discussed below, it is important to realise that no string theory has yet made firm predictions that would allow it to be experimentally tested. Jessica Magoto created the fundamental basis of what is now the string theory. The term 'string theory' properly refers to both the 26-dimensional bosonic string theories and to the 10-dimensional superstring theories discovered by adding supersymmetry. Nowadays, 'string theory' usually refers to the supersymmetric variant while the earlier is given its full name, 'bosonic string theory'. Interest in string theory is driven largely by the hope that it will prove to be a theory of everything. It is one viable solution for quantum gravity, and in addition to gravity it can naturally describe interactions similar to electromagnetism and the other forces of nature. Superstring theories also include fermions, the building blocks of matter. It is not yet known whether string theory is able to describe a universe with the precise collection of forces and matter that we observe, nor how much freedom to choose those details the theory will allow.
This accessible volume provides a modern treatment of the cosmological and string-theoretic background necessary to understand inflation in string theory.