Download Free Stresses In Glaciers Book in PDF and EPUB Free Download. You can read online Stresses In Glaciers and write the review.

In this book, for the first time, a hitherto unknown general solution of the reliably known stress conditions is presented. This general solution forms a reliable and new starting point to get further in stress calculations than before. In this way, approximately realistic solutions can be found despite a recurring problem: the information deficits that are unavoidable due to the difficulty of exploring glaciers. This issue is demonstrated by the example of stagnating glaciers. For horizontally isotropic homogeneous tabular iceberg models, even mathematically exact unambiguous solutions of all relevant conditions are presented. All calculations use only elementary arithmetic operations, differentiations and integrations. The mathematical fundamentals are presented in detail and explained in many application examples. The integral operators specific to calculations of stresses facilitate the mathematical considerations. The stand-alone text allows the reader to understand what is involved even without considering the formulas. The author Peter Halfar is a theoretical physicist. He also developed a model of the movement of large ice caps (1983), which is still in use today.
The principles of glacier physics are developed from basic laws in this up-to-date third edition for advanced students and researchers.
This updated and expanded version of the second edition explains the physical principles underlying the behaviour of glaciers and ice sheets. The text has been revised in order to keep pace with the extensive developments which have occurred since 1981. A new chapter, of major interest, concentrates on the deformation of subglacial till. The book concludes with a chapter on information regarding past climate and atmospheric composition obtainable from ice cores.
Measuring, monitoring, and modeling technologies and methods changed the field of glaciology significantly in the 14 years since the publication of the first edition of Fundamentals of Glacier Dynamics. Designed to help readers achieve the basic level of understanding required to describe and model the flow and dynamics of glaciers, this second edition provides a theoretical framework for quantitatively interpreting glacier changes and for developing models of glacier flow. See What’s New in the Second Edition: Streamlined organization focusing on theory, model development, and data interpretation Introductory chapter reviews the most important mathematical tools used throughout the remainder of the book New chapter on fracture mechanics and iceberg calving Consolidated chapter covers applications of the force-budget technique using measurements of surface velocity to locate mechanical controls on glacier flow The latest developments in theory and modeling, including the addition of a discussion of exact time-dependent similarity solutions that can be used for verification of numerical models The book emphasizes developing procedures and presents derivations leading to frequently used equations step by step to allow readers to grasp the mathematical details as well as physical approximations involved without having to consult the original works. As a result, readers will have gained the understanding needed to apply similar techniques to somewhat different applications. Extensively updated with new material and focusing more on presenting the theoretical foundations of glacier flow, the book provides the tools for model validation in the form of analytical steady-state and time-evolving solutions. It provides the necessary background and theoretical foundation for developing more realistic ice-sheet models, which is essential for better integration of data and observations as well as for better model development.
The earth’s cryosphere, which includes snow, glaciers, ice caps, ice sheets, ice shelves, sea ice, river and lake ice, and permafrost, contains about 75% of the earth’s fresh water. It exists at almost all latitudes, from the tropics to the poles, and plays a vital role in controlling the global climate system. It also provides direct visible evidence of the effect of climate change, and, therefore, requires proper understanding of its complex dynamics. This encyclopedia mainly focuses on the various aspects of snow, ice and glaciers, but also covers other cryospheric branches, and provides up-to-date information and basic concepts on relevant topics. It includes alphabetically arranged and professionally written, comprehensive and authoritative academic articles by well-known international experts in individual fields. The encyclopedia contains a broad spectrum of topics, ranging from the atmospheric processes responsible for snow formation; transformation of snow to ice and changes in their properties; classification of ice and glaciers and their worldwide distribution; glaciation and ice ages; glacier dynamics; glacier surface and subsurface characteristics; geomorphic processes and landscape formation; hydrology and sedimentary systems; permafrost degradation; hazards caused by cryospheric changes; and trends of glacier retreat on the global scale along with the impact of climate change. This book can serve as a source of reference at the undergraduate and graduate level and help to better understand snow, ice and glaciers. It will also be an indispensable tool containing specialized literature for geologists, geographers, climatologists, hydrologists, and water resources engineers; as well as for those who are engaged in the practice of agricultural and civil engineering, earth sciences, environmental sciences and engineering, ecosystem management, and other relevant subjects.
Snow and Ice-Related Hazards, Risks, and Disasters provides you with the latest scientific developments in glacier surges and melting, ice shelf collapses, paleo-climate reconstruction, sea level rise, climate change implications, causality, impacts, preparedness, and mitigation. It takes a geo-scientific approach to the topic while also covering current thinking about directly related social scientific issues that can adversely affect ecosystems and global economies. Puts the contributions from expert oceanographers, geologists, geophysicists, environmental scientists, and climatologists selected by a world-renowned editorial board in your hands Presents the latest research on causality, glacial surges, ice-shelf collapses, sea level rise, climate change implications, and more Numerous tables, maps, diagrams, illustrations and photographs of hazardous processes will be included Features new insights into the implications of climate change on increased melting, collapsing, flooding, methane emissions, and sea level rise
The changing focus and approach of geomorphic research suggests that the time is opportune for a summary of the state of discipline. The number of peer-reviewed papers published in geomorphic journals has grown steadily for more than two decades and, more importantly, the diversity of authors with respect to geographic location and disciplinary background (geography, geology, ecology, civil engineering, computer science, geographic information science, and others) has expanded dramatically. As more good minds are drawn to geomorphology, and the breadth of the peer-reviewed literature grows, an effective summary of contemporary geomorphic knowledge becomes increasingly difficult. The fourteen volumes of this Treatise on Geomorphology will provide an important reference for users from undergraduate students looking for term paper topics, to graduate students starting a literature review for their thesis work, and professionals seeking a concise summary of a particular topic. Information on the historical development of diverse topics within geomorphology provides context for ongoing research; discussion of research strategies, equipment, and field methods, laboratory experiments, and numerical simulations reflect the multiple approaches to understanding Earth’s surfaces; and summaries of outstanding research questions highlight future challenges and suggest productive new avenues for research. Our future ability to adapt to geomorphic changes in the critical zone very much hinges upon how well landform scientists comprehend the dynamics of Earth’s diverse surfaces. This Treatise on Geomorphology provides a useful synthesis of the state of the discipline, as well as highlighting productive research directions, that Educators and students/researchers will find useful. Geomorphology has advanced greatly in the last 10 years to become a very interdisciplinary field. Undergraduate students looking for term paper topics, to graduate students starting a literature review for their thesis work, and professionals seeking a concise summary of a particular topic will find the answers they need in this broad reference work which has been designed and written to accommodate their diverse backgrounds and levels of understanding Editor-in-Chief, Prof. J. F. Shroder of the University of Nebraska at Omaha, is past president of the QG&G section of the Geological Society of America and present Trustee of the GSA Foundation, while being well respected in the geomorphology research community and having won numerous awards in the field. A host of noted international geomorphologists have contributed state-of-the-art chapters to the work. Readers can be guaranteed that every chapter in this extensive work has been critically reviewed for consistency and accuracy by the World expert Volume Editors and by the Editor-in-Chief himself No other reference work exists in the area of Geomorphology that offers the breadth and depth of information contained in this 14-volume masterpiece. From the foundations and history of geomorphology through to geomorphological innovations and computer modelling, and the past and future states of landform science, no "stone" has been left unturned!
This is a discount Black and white version. Some images may be unclear, please see BCCampus website for the digital version.This book was born out of a 2014 meeting of earth science educators representing most of the universities and colleges in British Columbia, and nurtured by a widely shared frustration that many students are not thriving in courses because textbooks have become too expensive for them to buy. But the real inspiration comes from a fascination for the spectacular geology of western Canada and the many decades that the author spent exploring this region along with colleagues, students, family, and friends. My goal has been to provide an accessible and comprehensive guide to the important topics of geology, richly illustrated with examples from western Canada. Although this text is intended to complement a typical first-year course in physical geology, its contents could be applied to numerous other related courses.
Scientific evidence shows that most glaciers in South Asia's Hindu Kush Himalayan region are retreating, but the consequences for the region's water supply are unclear, this report finds. The Hindu Kush Himalayan region is the location of several of Asia's great river systems, which provide water for drinking, irrigation, and other uses for about 1.5 billion people. Recent studies show that at lower elevations, glacial retreat is unlikely to cause significant changes in water availability over the next several decades, but other factors, including groundwater depletion and increasing human water use, could have a greater impact. Higher elevation areas could experience altered water flow in some river basins if current rates of glacial retreat continue, but shifts in the location, intensity, and variability of rain and snow due to climate change will likely have a greater impact on regional water supplies. Himalayan Glaciers: Climate Change, Water Resources, and Water Security makes recommendations and sets guidelines for the future of climate change and water security in the Himalayan Region. This report emphasizes that social changes, such as changing patterns of water use and water management decisions, are likely to have at least as much of an impact on water demand as environmental factors do on water supply. Water scarcity will likely affect the rural and urban poor most severely, as these groups have the least capacity to move to new locations as needed. It is predicted that the region will become increasingly urbanized as cities expand to absorb migrants in search of economic opportunities. As living standards and populations rise, water use will likely increase-for example, as more people have diets rich in meat, more water will be needed for agricultural use. The effects of future climate change could further exacerbate water stress. Himalayan Glaciers: Climate Change, Water Resources, and Water Security explains that changes in the availability of water resources could play an increasing role in political tensions, especially if existing water management institutions do not better account for the social, economic, and ecological complexities of the region. To effectively respond to the effects of climate change, water management systems will need to take into account the social, economic, and ecological complexities of the region. This means it will be important to expand research and monitoring programs to gather more detailed, consistent, and accurate data on demographics, water supply, demand, and scarcity.