Download Free Stress Corrosion Cracking Of High Strength Stainless Steels In Atmospheric Environments Book in PDF and EPUB Free Download. You can read online Stress Corrosion Cracking Of High Strength Stainless Steels In Atmospheric Environments and write the review.

ATMOSPHERIC CORROSION Presents a comprehensive look at atmospheric corrosion, combining expertise in corrosion science and atmospheric chemistry Atmospheric corrosion has been a subject of engineering study, largely empirical, for nearly a century. Scientists came to the field rather later on and had considerable difficulty bringing their arsenal of tools to bear on the problem. Atmospheric corrosion was traditionally studied by specialists in corrosion having little knowledge of atmospheric chemistry, history, or prospects. Atmospheric Corrosion provides a combined approach bringing together experimental corrosion and atmospheric chemistry. The second edition expands on this approach by including environmental aspects of corrosion, atmospheric corrosion modeling, and international corrosion exposure programs. The combination of specialties provides a more comprehensive coverage of the topic. These scientific insights into the corrosion process and its amelioration are the focus of this book. Key topics include the following: Basic principles of atmospheric corrosion chemistry Corrosion mechanisms in controlled and uncontrolled environments Degradation of materials in architectural, transport, and structural applications; electronic devices; and cultural artifacts Protection of existing materials and choosing new ones that resist corrosion Prediction of how and where atmospheric corrosion may evolve in the future Complete with appendices discussing experimental techniques, computer models, and the degradation of specific metals, Atmospheric Corrosion, Second Edition continues to be an invaluable resource for corrosion scientists, corrosion engineers, conservators, environmental scientists, and anyone interested in the theory and application of this evolving field. The book concerns primarily the atmospheric corrosion of metals and is written at a level suitable for advanced undergraduates or beginning graduate students in any of the physical or engineering sciences.
Details the many conditions under which stress-corrosion cracking (SCC) can occur, the parameters which control SCC, and the methodologies for mitigating and testing for SCC, plus information on mechanisms of SCC with experimental data on a variety of materials. Contains information about environmen
Studies on the effects of heat-treating and testing environments for the refractory metals have been limited primarily to the unalloyed metals and a few alloys of columbium and molybdenum. Most of this work has relied on compositional changes as a means of assesing the effects of various environments on these materials. It has been shown that all of these materials are subject to contamination or purification in various test environments. The residual gases H2, CO(or N2), and H20, constitute the major sources of contamination when testing columbium and tantalum materials in vacua. Under the same conditions, molybdenum and molybdenum alloys containing carbon and reactive-metal additions are subject to serious decarburization. Nonreactive gaseous atmospheres also cause serious changes in material chemistry, since small quantities of noxious gases are contained in the atmosphere. Several promising methods of circumventing material chemistry changes during various longtime, high-temperature exposures are being used and/or evaluated. (Author).
A summary is presented of the status of the Department of Defense Refractory Metals SheetRolling Program to accelerate the development of production techniques for high-quality, consistent sheet products from the refractory metals (Nb, Mo, Ta, and W) and their alloys. The program includes: (1) development of sheet production techniques, (2) establishment of minimum data re uired to evaluate mill production, (3) evaluation of fabrication characteristics of the sheet produced, and (4) establishment of design data. Contracts were awarded for the development of sheet production techniques for all four refractory metals. One contract was awarded for the evaluation of Mo alloy sheet fabrication characteristics. (Author).