Download Free Street Computing Book in PDF and EPUB Free Download. You can read online Street Computing and write the review.

This book develops tools and techniques that will help urban residents gain access to urban computing. Metaphorically speaking, it is taking computing to the street by giving the general public – rather than just researchers and professionals – the power to leverage available city infrastructure and create solutions tailored to their individual needs. It brings together five articles that are based on presentations given at the Street Computing Workshop held on 24 November 2009 in Melbourne in conjunction with the Australian Computer-Human Interaction conference (OZCHI 2009). This volume focuses on applying urban informatics, urban and community sensing and open application programming interfaces (APIs) to the public space through the delivery of online services, on demand and in real time. It then offers a case study of how the city of Singapore has harnessed the potential of an online infrastructure so that residents and visitors can access services electronically. This book was published as a special issue of the Journal of Urban Technology.
Computing isn't only (or even mostly) about hardware and software; it's also about the ideas behind the technology. In Computing for Ordinary Mortals, computer scientist Robert St. Amant explains this "really interesting part" of computing, introducing basic computing concepts and strategies in a way that readers without a technical background can understand and appreciate. Each of the chapters illustrates ideas from a different area of computing, and together they provide important insights into what drives the field as a whole. St. Amant starts off with an overview of basic concepts as well as a brief history of the earliest computers, and then he traces two different threads through the fabric of computing. One thread is practical, illuminating the architecture of a computer and showing how this architecture makes computation efficient. St. Amant shows us how to write down instructions so that a computer can accomplish specific tasks (programming), how the computer manages those tasks as it runs (in its operating system), and how computers can communicate with each other (over a network). The other thread is theoretical, describing how computers are, in the abstract, machines for solving problems. Some of these ideas are embedded in much of what we do as humans, and thus this discussion can also give us insight into our own daily activities, how we interact with other people, and in some cases even what's going on in our heads. St. Amant concludes with artificial intelligence, exploring the possibility that computers might eventually be capable of human-level intelligence, and human-computer interaction, showing how computers can enrich our lives--and how they fall short.
Based on the results of a third survey, the engineering and programming characteristics of 222 different electronic digital computing systems are given. The data are presented from the point of view of application, numerical and arithmetic characteristics, input, output and storage systems, construction and checking features, power, space, weight, and site preparation and personnel requirements, production records, cost and rental rates, sale and lease policy, reliability, operating experience, and time availability, engineering modifications and improvements and other related topics. An analysis of the survey data, fifteen comparative tables, a discussion of trends, a revised bibliography, and a complete glossary of computer engineering and programming terminology are included.
U.S. agriculture appears to be at a major turning point in terms of technological change and innovation as it enters the information age[1]and at the heart of the information revolution is the microcomputer. This handbook explains in practical terms how computers are being used in agriculture and analyzes some of the issues surrounding present and potential computer applications. The authors define agriculture in the broadest possible terms, including the traditional aspects of farming, the industries supporting agriculture, service bureaus related to agriculture, classroom instruction and youth development, and the rural family and community. Considered are specific ways microcomputers are changing agriculture, the exact nature of these changes, and how agriculturists are currently adapting microprocessor technology to make agriculture more efficient and viable. Also included is a discussion of the computer software and hardware used in agriculture today, hardware and software purchasing strategies for both individuals and institutions, and sources of information on computer applications in agriculture.
According to Rosalind Picard, if we want computers to be genuinely intelligent and to interact naturally with us, we must give computers the ability to recognize, understand, even to have and express emotions. The latest scientific findings indicate that emotions play an essential role in decision making, perception, learning, and more—that is, they influence the very mechanisms of rational thinking. Not only too much, but too little emotion can impair decision making. According to Rosalind Picard, if we want computers to be genuinely intelligent and to interact naturally with us, we must give computers the ability to recognize, understand, even to have and express emotions. Part 1 of this book provides the intellectual framework for affective computing. It includes background on human emotions, requirements for emotionally intelligent computers, applications of affective computing, and moral and social questions raised by the technology. Part 2 discusses the design and construction of affective computers. Although this material is more technical than that in Part 1, the author has kept it less technical than typical scientific publications in order to make it accessible to newcomers. Topics in Part 2 include signal-based representations of emotions, human affect recognition as a pattern recognition and learning problem, recent and ongoing efforts to build models of emotion for synthesizing emotions in computers, and the new application area of affective wearable computers.
An accessible guide to the ideas and technologies underlying such applications as GPS, Google Maps, Pokémon Go, ride-sharing, driverless cars, and drone surveillance. Billions of people around the globe use various applications of spatial computing daily—by using a ride-sharing app, GPS, the e911 system, social media check-ins, even Pokémon Go. Scientists and researchers use spatial computing to track diseases, map the bottom of the oceans, chart the behavior of endangered species, and create election maps in real time. Drones and driverless cars use a variety of spatial computing technologies. Spatial computing works by understanding the physical world, knowing and communicating our relation to places in that world, and navigating through those places. It has changed our lives and infrastructures profoundly, marking a significant shift in how we make our way in the world. This volume in the MIT Essential Knowledge series explains the technologies and ideas behind spatial computing. The book offers accessible descriptions of GPS and location-based services, including the use of Wi-Fi, Bluetooth, and RFID for position determination out of satellite range; remote sensing, which uses satellite and aerial platforms to monitor such varied phenomena as global food production, the effects of climate change, and subsurface natural resources on other planets; geographic information systems (GIS), which store, analyze, and visualize spatial data; spatial databases, which store multiple forms of spatial data; and spatial statistics and spatial data science, used to analyze location-related data.
Biomedical engineering brings together bright minds from diverse disciplines, ranging from engineering, physics, and computer science to biology and medicine. This book contains the proceedings of the 11th Mediterranean Conference on Medical and Biological Engineering and Computing, MEDICON 2007, held in Ljubljana, Slovenia, June 2007. It features relevant, up-to-date research in the area.