Download Free Stream Biological Study Book in PDF and EPUB Free Download. You can read online Stream Biological Study and write the review.

The aim of this book is to provide an accessible, up-to-date introduction to stream and river biology. Beginning with the physical features that define running water habitats, the book goes on to look at these organisms and their ecology.
Biological Assessment and Criteria presents a state-of-the-art overview of the applications of biological assessments and biocriteria for water quality management in fresh waters. The book presents case studies which illustrate how bioassessment has been used to identify and diagnose water quality problems. It also provides examples of the use of qualitative and quantitative biocriteria as regulatory tools to complement water quality criteria and standards. The first book to present the technical foundation, rationale, program and policy relevance, and legal basis for the most accurate tools used to assess freshwater natural resource and regulatory efforts, this book provides useful and timely information for water quality managers.
Tropical Stream Ecology describes the main features of tropical streams and their ecology. It covers the major physico-chemical features, important processes such as primary production and organic-matter transformation, as well as the main groups of consumers: invertebrates, fishes and other vertebrates. Information on concepts and paradigms developed in north-temperate latitudes and how they do not match the reality of ecosystems further south is expertly addressed. The pressing matter of conservation of tropical streams and their biodiversity is included in almost every chapter, with a final chapter providing a synthesis on conservation issues. For the first time, Tropical Stream Ecology places an important emphasis on viewing research carried out in contributions from international literature. - First synthetic account of the ecology of all types of tropical streams - Covers all of the major tropical regions - Detailed consideration of possible fundamental differences between tropical and temperate stream ecosystems - Threats faced by tropical stream ecosystems and possible conservation actions - Descriptions and synstheses life-histories and breeding patterns of major aquatic consumers (fishes, invertebrates)
Methods in Stream Ecology, Second Edition, provides a complete series of field and laboratory protocols in stream ecology that are ideal for teaching or conducting research. This updated edition reflects recent advances in the technology associated with ecological assessment of streams, including remote sensing. In addition, the relationship between stream flow and alluviation has been added, and a new chapter on riparian zones is also included. The book features exercises in each chapter; detailed instructions, illustrations, formulae, and data sheets for in-field research for students; and taxanomic keys to common stream invertebrates and algae. With a student-friendly price, this book is key for all students and researchers in stream and freshwater ecology, freshwater biology, marine ecology, and river ecology. This text is also supportive as a supplementary text for courses in watershed ecology/science, hydrology, fluvial geomorphology, and landscape ecology. - Exercises in each chapter - Detailed instructions, illustrations, formulae, and data sheets for in-field research for students - Taxanomic keys to common stream invertebrates and algae - Link from Chapter 22: FISH COMMUNITY COMPOSITION to an interactive program for assessing and modeling fish numbers
This classroom resource provides clear, concise scientific information in an understandable and enjoyable way about water and aquatic life. Spanning the hydrologic cycle from rain to watersheds, aquifers to springs, rivers to estuaries, ample illustrations promote understanding of important concepts and clarify major ideas. Aquatic science is covered comprehensively, with relevant principles of chemistry, physics, geology, geography, ecology, and biology included throughout the text. Emphasizing water sustainability and conservation, the book tells us what we can do personally to conserve for the future and presents job and volunteer opportunities in the hope that some students will pursue careers in aquatic science. Texas Aquatic Science, originally developed as part of a multi-faceted education project for middle and high school students, can also be used at the college level for non-science majors, in the home-school environment, and by anyone who educates kids about nature and water. To learn more about The Meadows Center for Water and the Environment, sponsors of this book's series, please click here.
The assessment of the ecological integrity of running waters is a prerequisite to an understanding of the effects of human alterations. The evaluation of degradation processes provides key information on how to avoid further negative impacts. The success of future conservation, mitigation and restoration activities will rely on sound assessment methodologies and their ecological relevance and applicability. Assessment methodologies are therefore an integral part of sustainable river management. This book synthesizes and discusses state-of-the-art experiences in assessment methodologies. Including the latest knowledge on structures, processes and functions of running waters as a fundamental basis for developing adequate assessment methods, the book focuses on method development, application, and in particular on integrated assessment methods. This book is directed at scientists and managers with the aim of more effective preservation, restoration and maintenance of the ecological integrity of running water ecosystems.
Running waters are enormously diverse, ranging from torrential mountain brooks, to large lowland rivers, to great river systems whose basins occupy subcontinents. While this diversity makes river ecosystems seem overwhelmingly complex, a central theme of this volume is that the processes acting in running waters are general, although the settings are often unique. The past two decades have seen major advances in our knowledge of the ecology of streams and rivers. New paradigms have emerged, such as the river continuum and nutrient spiraling. Community ecologists have made impressive advances in documenting the occurrence of species interactions. The importance of physical processes in rivers has attracted increased attention, particularly the areas of hydrology and geomorphology, and the inter-relationships between physical and biological factors have become better understood. And as is true for every area of ecology during the closing years of the twentieth century it has become apparent that the study of streams and rivers cannot be carried out by excluding the role of human activities, nor can we ignore the urgency of the need for conservation. These developments are brought together in Stream Ecology: Structure and function of running waters, designed to serve as a text for advanced undergraduate and graduate students, and as a reference book for specialists in stream ecology and related fields.
In the quest to mitigate the buildup of greenhouse gases in Earth's atmosphere, researchers and policymakers have increasingly turned their attention to techniques for capturing greenhouse gases such as carbon dioxide and methane, either from the locations where they are emitted or directly from the atmosphere. Once captured, these gases can be stored or put to use. While both carbon storage and carbon utilization have costs, utilization offers the opportunity to recover some of the cost and even generate economic value. While current carbon utilization projects operate at a relatively small scale, some estimates suggest the market for waste carbon-derived products could grow to hundreds of billions of dollars within a few decades, utilizing several thousand teragrams of waste carbon gases per year. Gaseous Carbon Waste Streams Utilization: Status and Research Needs assesses research and development needs relevant to understanding and improving the commercial viability of waste carbon utilization technologies and defines a research agenda to address key challenges. The report is intended to help inform decision making surrounding the development and deployment of waste carbon utilization technologies under a variety of circumstances, whether motivated by a goal to improve processes for making carbon-based products, to generate revenue, or to achieve environmental goals.