Download Free Stratigraphic Framework And Depositional Systems Upper Bloyd And Lower Atoka Pennsylvanian Strata Arkoma Basin Of Central Arkansas Book in PDF and EPUB Free Download. You can read online Stratigraphic Framework And Depositional Systems Upper Bloyd And Lower Atoka Pennsylvanian Strata Arkoma Basin Of Central Arkansas and write the review.

Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1 957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all con cerned if the printing and distribution of the volumes were handled by an interna tional publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Cor poration of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 28 (thesis year 1 983) a total of 10,661 theses titles from 26 Canadian and 197 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this important annual reference work. While Volume 28 reports theses submitted in-1983, on occasion, certain univer sities do report theses submitted in previous years but not reported at the time.
The Arkoma basin is an arcuate Paleozoic structural feature in the Ouachita foreland that extends from central Arkansas and westward into southeastern Oklahoma. The Arkoma shelf lies immediately north of the basin and is comprised of Cambrian to Pennsylvanian age sedimentary rocks. In northwestern Arkansas, the stratigraphic and structural transition from the shelf into the northern portion of the Arkoma basin is poorly defined. Wireline logs were used to construct a series of three north to south cross sections, as well as two along-strike west to east cross sections to examine Morrowan and lower Atokan age strata. In addition to cross sections, isopach and structural contour maps were constructed from wireline log correlation. North to south cross sections display thickening to the south, particularly with sandstone and shale units. West to east cross sections exhibit thickening to the east due to proximity to an eastern terrigenous sediment source. Morrow and lower Atoka strata document the initiation of Arkoma basin subsidence during early Pennsylvanian time and reflect an eastern source of terrigenous sediment to the Arkoma shelf.
The Arkoma Basin is a Carboniferous peripheral foreland basin creating a structural depression covering an approximate area of 33,800 miles2 that extends through east-central Oklahoma and west-central Arkansas. The entire basin fill includes Pre-Mississippian carbonate shelf deposits, Mississippian marine carbonates and black shales, and Pennsylvanian mixed carbonated/clastic and shore zone/deltaic deposits. The Lower Atoka formation (Pennsylvanian) occurs in outcrop along the southern Boston Mountain Plateau in northern Arkansas and extends into the subsurface of the Arkoma Basin over an area of 2,300 miles2. The Lower Atoka ranges from 600 to 1500 feet in thickness and represents a cyclic succession of stacked shelf to shore zone/deltaic deposits recording a single 3rd order (1-10 m.y.) Vail/Exxon depositional sequence. It was deposited across a broad, tectonically stable platform along the southern margin of Laurasia just before its collision with the Gondwana and the formation of Pangea at the end of the Paleozoic. Tectonic influences meant that it was not a 100% stable platform during the Lower Atoka deposition. This affected the deposition of all the sequences in the Lower Atoka. Topographic relief on preceding deposition also helped create areas of accommodation space filled by offset, compensation bedding. Finally, subsidence on a passive margin has been argued to be up to almost 4 km. This helps explain the "long distance" shoreline shifts and cyclicity in the current time of deposition. This means that these 4th to 5th order cycles (10's to 100's k.y.) may reflect glacio eustacy and sediment supply and can be correlated across the entire area or a very large area. In addition, there appears to be a tectonic over print that influences onlap edges that define northern limits and areas of bypass and nondeposition.
The east-to-west oriented Arkoma Basin is a peripheral foreland basin or depositional trough that developed during the Carboniferous Period. This formation covers an aerial extent of approximately 33,800 square miles and spans from west-central Arkansas into southeastern Oklahoma (McGilvery, Manger, and Zachry, 2016; Perry, 1995). The Atoka Formation, deposited during the early Pennsylvanian, is the largest Paleozoic formation by aerial extent in the state of Arkansas and is located within and comprises the bulk of Arkoma Basin sediments (McFarland, 2004; Nance, 2018). This formation has been informally divided into three divisions, the lower, middle, and upper, based on their stratigraphic response to differing tectonic processes. A tectonostratigraphic interpretation was made for each division of the Atoka Formation using high resolution cross sections; correlated using well log, seismic, and surface data. Five condensed regional transects were constructed that aided in the development of a cross section "grid" meant to represent the deep marine to shallow marine depositional hinge lines. Each of the three Atoka divisions have a different dominant depositional force. The Lower Atoka deposition was dominated by eustasy, and with sediment supply from the start of Arkoma Basin tectonics, the middle division was dominated by tectonic subsidence and the upper was dominated by sediment supply. The transition between the Atoka divisions and the magnitude of migration between each deep marine hinge line indicates the progradation of the Upper Atoka depositional cycles occurred more rapidly than the retrogradation of the Middle Atoka. The maximum flooding of the formation occurred within the Middle Atoka's uppermost informal member, the Morris Member. The Lower Atoka was deposited on an extensive tectonically stable structural platform, which is supported by no lithostratigraphic transition to deep marine deposits within this project's study area. The deep marine deposition is characterized by shales encapsulating tumultuously distributed and isolated sandstone complexes. These sandstone complexes are not correlated to the shallow marine sandstones by anything but a condensed geologic timeline.