Download Free Strategies For Teaching Mathematics Book in PDF and EPUB Free Download. You can read online Strategies For Teaching Mathematics and write the review.

Enhance mathematics instruction and build students' understanding of mathematical concepts with this practical, research-based resource. Choose from a wide range of easy-to-implement strategies that enhance mathematics instruction, including developing students' mathematical vocabulary and problem-solving abilities, assessing students' mathematics thinking, and using manipulatives. Highlights include tips on planning instruction and managing the mathematics classroom, plus differentiation strategies for each lesson. This resource is correlated to College and Career Readiness and other state standards.
Is there a way to get students to love math? Dr. Judy Willis responds with an emphatic yes in this informative guide to getting better results in math class. Tapping into abundant research on how the brain works, Willis presents a practical approach for how we can improve academic results by demonstrating certain behaviors and teaching students in a way that minimizes negativity. With a straightforward and accessible style, Willis shares the knowledge and experience she has gained through her dual careers as a math teacher and a neurologist. In addition to learning basic brain anatomy and function, readers will learn how to * Improve deep-seated negative attitudes toward math. * Plan lessons with the goal of "achievable challenge" in mind. * Reduce mistake anxiety with techniques such as errorless math and estimation. * Teach to different individual learning strengths and skill levels. * Spark motivation. * Relate math to students' personal interests and goals. * Support students in setting short-term and long-term goals. * Convince students that they can change their intelligence. With dozens of strategies teachers can use right now, Learning to Love Math puts the power of research directly into the hands of educators. A Brain Owner's Manual, which dives deeper into the structure and function of the brain, is also included—providing a clear explanation of how memories are formed and how skills are learned. With informed teachers guiding them, students will discover that they can build a better brain . . . and learn to love math!
Teaching junior and senior high school math classes. Instructors of mathematics, school administrators, math specialists, and parents.
Engage students in mathematics using growth mindset techniques The most challenging parts of teaching mathematics are engaging students and helping them understand the connections between mathematics concepts. In this volume, you'll find a collection of low floor, high ceiling tasks that will help you do just that, by looking at the big ideas at the first-grade level through visualization, play, and investigation. During their work with tens of thousands of teachers, authors Jo Boaler, Jen Munson, and Cathy Williams heard the same message—that they want to incorporate more brain science into their math instruction, but they need guidance in the techniques that work best to get across the concepts they needed to teach. So the authors designed Mindset Mathematics around the principle of active student engagement, with tasks that reflect the latest brain science on learning. Open, creative, and visual math tasks have been shown to improve student test scores, and more importantly change their relationship with mathematics and start believing in their own potential. The tasks in Mindset Mathematics reflect the lessons from brain science that: There is no such thing as a math person - anyone can learn mathematics to high levels. Mistakes, struggle and challenge are the most important times for brain growth. Speed is unimportant in mathematics. Mathematics is a visual and beautiful subject, and our brains want to think visually about mathematics. With engaging questions, open-ended tasks, and four-color visuals that will help kids get excited about mathematics, Mindset Mathematics is organized around nine big ideas which emphasize the connections within the Common Core State Standards (CCSS) and can be used with any current curriculum.
Making mathematics concepts understandable is a challenge for any teacher--a challenge that's more complex when a classroom includes students with learning difficulties. With this highly practical resource, educators will have just what they need to teach mathematics with confidence: research-based strategies that really work with students who have learning disabilities, ADHD, or mild cognitive disabilities. This urgently needed guidebook helps teachers Understand why students struggle.Teachers will discover how the common learning characteristics of students with learning difficulties create barriers to understanding mathematics. Review the Big Ideas. Are teachers focusing on the right things? A helpful primer on major NCTM-endorsed mathematical concepts and processes helps them be sure. Directly address students' learning barriers. With the lesson plans, practical strategies, photocopiable information-gathering forms, and online strategies in action, teachers will have concrete ways to help students grasp mathematical concepts, improve their proficiency, and generalize knowledge in multiple contexts. Check their own strengths and needs. Educators will reflect critically on their current practices with a thought-provoking questionnaire. With this timely book--filled with invaluable ideas and strategies adaptable for grades K-12--educators will know just what to teach and how to teach it to students with learning difficulties.
Build a solid mathematics program by emphasizing prioritized learning goals and integrating RTI into your curriculum. Prepare students to move forward in mathematics learning, and ensure their continued growth in critical thinking and problem solving. With this book, you’ll discover an RTI model that provides the mathematics instruction, assessment, and intervention strategies necessary to meet the complex, diverse needs of students.
An eyeopening look at how teachers can use literacy strategies to help students better understand mathematics.
Because fluency practice is not a worksheet. Fluency in mathematics is more than adeptly using basic facts or implementing algorithms. Real fluency involves reasoning and creativity, and it varies by the situation at hand. Figuring Out Fluency in Mathematics Teaching and Learning offers educators the inspiration to develop a deeper understanding of procedural fluency, along with a plethora of pragmatic tools for shifting classrooms toward a fluency approach. In a friendly and accessible style, this hands-on guide empowers educators to support students in acquiring the repertoire of reasoning strategies necessary to becoming versatile and nimble mathematical thinkers. It includes: "Seven Significant Strategies" to teach to students as they work toward procedural fluency. Activities, fluency routines, and games that encourage learning the efficiency, flexibility, and accuracy essential to real fluency. Reflection questions, connections to mathematical standards, and techniques for assessing all components of fluency. Suggestions for engaging families in understanding and supporting fluency. Fluency is more than a toolbox of strategies to choose from; it’s also a matter of equity and access for all learners. Give your students the knowledge and power to become confident mathematical thinkers.
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
This text offers guidance to teachers, mathematics coaches, administrators, parents, and policymakers. This book: provides a research-based description of eight essential mathematics teaching practices ; describes the conditions, structures, and policies that must support the teaching practices ; builds on NCTM's Principles and Standards for School Mathematics and supports implementation of the Common Core State Standards for Mathematics to attain much higher levels of mathematics achievement for all students ; identifies obstacles, unproductive and productive beliefs, and key actions that must be understood, acknowledged, and addressed by all stakeholders ; encourages teachers of mathematics to engage students in mathematical thinking, reasoning, and sense making to significantly strengthen teaching and learning.