Download Free Strange Particles Book in PDF and EPUB Free Download. You can read online Strange Particles and write the review.

With a New Afterword "Our knowledge of fundamental physics contains not one fruitful idea that does not carry the name of Murray Gell-Mann."--Richard Feynman Acclaimed science writer George Johnson brings his formidable reporting skills to the first biography of Nobel Prize-winner Murray Gell-Mann, the brilliant, irascible man who revolutionized modern particle physics with his models of the quark and the Eightfold Way. Born into a Jewish immigrant family on New York's East 14th Street, Gell-Mann's prodigious talent was evident from an early age--he entered Yale at 15, completed his Ph.D. at 21, and was soon identifying the structures of the world's smallest components and illuminating the elegant symmetries of the universe. Beautifully balanced in its portrayal of an extraordinary and difficult man, interpreting the concepts of advanced physics with scrupulous clarity and simplicity, Strange Beauty is a tour-de-force of both science writing and biography.
A fascinating tour of particle physics from Nobel Prize winner Leon Lederman. At the root of particle physics is an invincible sense of curiosity. Leon Lederman embraces this spirit of inquiry as he moves from the Greeks' earliest scientific observations to Einstein and beyond to chart this unique arm of scientific study. His survey concludes with the Higgs boson, nicknamed the God Particle, which scientists hypothesize will help unlock the last secrets of the subatomic universe, quarks and all--it's the dogged pursuit of this almost mystical entity that inspires Lederman's witty and accessible history.
Journey into an unseen world—and to the frontiers of human knowledge Welcome to Atom Land, a subatomic realm governed by the laws of particle physics. Here, electromagnetism is a highway system; the strong force, a railway; the weak force, an airline. With award-winning physicist Jon Butterworth as your guide, you’ll set sail from Port Electron in search of strange new terrain—from the Isle of Quarks to the very edge of Antimatter. Journey into an unseen world—and to the frontiers of human knowledge.
The book provides theoretical and phenomenological insights on the structure of matter, presenting concepts and features of elementary particle physics and fundamental aspects of nuclear physics. Starting with the basics (nomenclature, classification, acceleration techniques, detection of elementary particles), the properties of fundamental interactions (electromagnetic, weak and strong) are introduced with a mathematical formalism suited to undergraduate students. Some experimental results (the discovery of neutral currents and of the W± and Z0 bosons; the quark structure observed using deep inelastic scattering experiments) show the necessity of an evolution of the formalism. This motivates a more detailed description of the weak and strong interactions, of the Standard Model of the microcosm with its experimental tests, and of the Higgs mechanism. The open problems in the Standard Model of the microcosm and macrocosm are presented at the end of the book. For example, the CP violation currently measured does not explain the matter-antimatter asymmetry of the observable universe; the neutrino oscillations and the estimated amount of cosmological dark matter seem to require new physics beyond the Standard Model. A list of other introductory texts, work reviews and some specialized publications is reported in the bibliography. Translation from the Italian Language Edition "Particelle e interazioni fondamentali" by Sylvie Braibant, Giorgio Giacomelli, and Maurizio Spurio Copyright © Springer-Verlag Italia, 2009 Springer-Verlag Italia is part of Springer Science+Business Media All Rights Reserved
The Physics of Elementary Particles details the physical principles that govern the behavior of elementary particles. The title focuses on discussing the theoretical concepts of elementary particles. The text first tackles the discovery and classification of the elementary particles, and then proceeds to covering the intrinsic properties of the particles. Chapter 3 talks about the preliminaries to a quantized field theory, while Chapter 4 deals with the quantum theory of non-interacting fields. Next, the selection details the symmetry properties of free fields. The next five chapters are dedicated to covering the interaction of fields. The remaining chapters discuss various forms of interaction, such as electromagnetic, weak, and strong. The book will be of great interest to physicists, particularly those who specialize in quantum mechanics.
To cope with modern developments, especially in nuclear physics research, this textbook presents nuclear and particle physics from a unifying point of view. The first part, Analysis, is devoted to disentangling the substructure of matter. The second part, Synthesis, shows how the elementary particles may be combined to build hadrons and nuclei. A section on neutrino oscillations and one on nuclear matter at high temperatures bridge the field of "nuclear and particle physics" and "modern astrophysics and cosmology". New developments are also covered. This concise text has become a standard reference for advanced and undergraduate courses.
Embedded in an autobiographic framework, this book retraces vividly and in some depth the golden years of particle physics as witnessed by one of the scientists who made seminal contributions to the understanding of what is now known as the Standard Model of particle physics. Well beyond a survey of interest to historians of sciences and researchers in the field, this book is a must for all students and young researchers who have learned about the theoretical and experimental facts that make up the standard model through modern textbooks only. It will provide the interested reader with a first hand account and deeper understanding of the multilayered and sinuous development that finally led to the present architecture of this theory.
The search for the elementary constituents of the physical universe and the interactions between them has transformed over time and continues to evolve today, as we seek answers to questions about the existence of stars, galaxies, and humankind. Integrating both theoretical and experimental work, Exploring Fundamental Particles traces the developme
This is the first quantitative treatment of elementary particle theory that is accessible to undergraduates. Using a lively, informal writing style, the author strikes a balance between quantitative rigor and intuitive understanding. The first chapter provides a detailed historical introduction to the subject. Subsequent chapters offer a consistent and modern presentation, covering the quark model, Feynman diagrams, quantum electrodynamics, and gauge theories. A clear introduction to the Feynman rules, using a simple model, helps readers learn the calculational techniques without the complications of spin. And an accessible treatment of QED shows how to evaluate tree-level diagrams. Contains an abundance of worked examples and many end-of-chapter problems.
An Introduction to Elementary Particles, Second Edition aims to give an introduction to the theoretical methods and ideas used to describe how elementary particles behave, as well as interpret some of the phenomena associated with it. The book covers topics such as quantum mechanics; brats, kets, vectors, and linear operations; angular momentum; scattering and reaction theory; the polarization and angularization of spin-0-spin-1/2 scattering; and symettery, isotopic spin, and hypercharge. The book also discusses particles such as bosons, baryons, mesons, kaons, and hadrons, as well as the interactions between them. The text is recommended for physicists, especially those who are practitioners and researchers in the fields of quantum physics and elementary-particle physics.