Download Free Stoichiometric Asymmetric Synthesis Book in PDF and EPUB Free Download. You can read online Stoichiometric Asymmetric Synthesis and write the review.

Edited by two of the leading researchers in the field, this book provides a deep, interdisciplinary insight into stoichiometric and catalytic reactions in this continuously expanding area. A plethora of top German scientists with an international reputation covers various aspects, from classical organic chemistry to process development, and from the theoretical background to biological methods using enzymes. Throughout the focus is on the development of new synthetic methods in asymmetric synthesis, the synthesis of natural and bioactive compounds and the latest developments in both chemical and biological methods of catalysis, as well as the investigation of special technical and biotechnical aspects.
Asymmetric synthesis remains a challenge to practicing scientistsas the need for enantiomerically pure or enriched compoundscontinues to increase. Over the last decade, a large amount ofliterature has been published in this field. Principles andApplications of Asymmetric Synthesis consolidates and evaluates themost useful methodologies into a one-volume resource for theconvenience of practicing scientists and students. Authored by internationally renowned scientists in the field, thisreliable reference covers more than 450 reactions and includesimportant stoichiometric as well as catalytic asymmetric reactions.The first chapter reviews the basic principles, commonnomenclature, and analytical methods, and the remainder of the bookis organized according to reaction type. The text examines suchtopics as: Carbon-carbon bond formations involving carbonyls, enamines,imines, and enolates Asymmetric C-O bond formations including epoxidation,dihydroxylation, and aminohydroxylation Asymmetric synthesis using the Diels-Alder reaction and othercyclizations Applications to the total synthesis of natural products Use of enzymes in asymmetric synthesis Practicing chemists in the pharmaceutical, fine chemical, andagricultural professions as well as graduate students will findthat Principles and Applications of Asymmetric Synthesis affordscomprehensive and current coverage.
Axially Chiral Compounds Explore this comprehensive and current volume summarizing the characteristics, synthesis, and applications of axial chirality Appearing widely in natural products, biologically active molecules, asymmetric chemistry, and material science, axially chiral motifs constitute the core backbones of the majority of chiral ligands and organocatalysts in asymmetric catalysis. In a new work of particular relevance to synthetic chemists, Axially Chiral Compounds: Asymmetric Synthesis and Applications delivers a clearly structured and authoritative volume covering the classification, characteristics, synthesis, and applications of axial chirality. A must read for every synthetic chemist practicing today, the book follows the development history, research status, and applications of axial chirality. An introductory chapter familiarizes the reader with foundational material before the distinguished authors describe the different classes and the synthesis of axial chiral compounds used in asymmetric synthesis. The book concludes with a focus on the applications of chiral ligands, chiral catalysts, and materials. Readers will also benefit from the inclusion of: A thorough introduction to asymmetric synthesis, including biaryls atropisomers, heterobiaryls atropisomers, and non-biaryls atropisomers Explorations of chiral allene, spiro skeletons, and natural products Practical discussions of asymmetric transformation, chiral ligands, and chiral catalysts An examination of miscellaneous applications of axially chiral compounds Perfect for organic chemists, chemists working with or on organometallics, catalytic chemists, and materials scientists, Axially Chiral Compounds: Asymmetric Synthesis and Applications will also earn a place in the libraries of natural products chemists who seek a one-stop reference for compounds exhibiting axial chirality.
In this first book to gather the information on this hot topic otherwise widely spread throughout the literature, experienced editors and top international authors cover everything the reader needs -- from the synthesis of chiral organosulfur compounds to applications and catalysis: * Asymmetric synthesis of chiral sulfinates and sulfoxides * Synthesis and use of chiral dithioacetal derivatives, ylids, chiral sulfoximines and sulfinamides * Use of chiral sulfoxides as ligands in catalysis * Asymmetric reactions of alpha-sulfenyl, alpha-sulfinyl and alpha-sulfonyl carbanions. As a result, readers will be able to improve their own performance in asymmetric synthesis.
Stoichiometric asymmetric synthesis is widely used in the academic and industrial sectors for the synthesis of chiral molecules of biological importance. Although catalytic asymmetric synthesis is an alternative, the use of equimolar amounts of chirality provides high selectivities over a wider range of substrates, without extensive modifications of reaction conditions. This volume provides, at postgraduate student level, an accessible introduction to stoichiometric asymmetric synthesis. The authors focus on stereoselective C-C bond formation in acyclic systems, with an emphasis on the use of chiral auxiliaries and reagents. The book is extensively references and so provides a convenient point of entry to the research literature.
This volume provides a comprehensive overview of the rapidly developing field of asymmetric synthesis. Using easy to understand graphical abstracts it presents 348 important catalytic and stoichiometric reactions leading to the synthesis of optically active chiral compounds. The first part of the book covers reactions related to reductions, oxidations, carbon-carbon bond formation and carbon-heteroatom bond formation. Each graphical abstract is accompanied by a list of important keywords and references to assist the reader. The second part concentrates on experimental aspects, describing synthetic procedures for selected chiral reagents and chiral auxiliaries, and provides an invaluable reference tool for laboratory work. Written with both the graduate student and professional organic chemist in mind, this book will serve as an important resource for the synthetic organic chemist.
The series Topics in Organometallic Chemistry presents critical overviews of research results in organometallic chemistry. As our understanding of organometallic structure, properties and mechanisms increases, new ways are opened for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as organic synthesis, medical research, biology and materials science. Thus the scope of coverage includes a broad range of topics in pure and applied organometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. The individual volumes of Topics in Organometallic Chemistry are thematic. Review articles are generally invited by the volume editors.
The world is chiral. Most of the molecules in it are chiral, and asymmetric synthesis is an important means by which enantiopure chiral molecules may be obtained for study and sale. Using examples from the literature of asymmetric synthesis (more than 1300 references), the aim of this book is to present a detailed analysis of the factors that govern stereoselectivity in organic reactions. It is important to note that the references were each individually checked by the authors to verify relevance to the topics under discussion. The study of stereoselectivity has evolved from issues of diastereoselectivity, through auxiliary-based methods for the synthesis of enantiomerically pure compounds (diastereoselectivity followed by separation and auxiliary cleavage), to asymmetric catalysis. In the latter instance, enantiomers (not diastereomers) are the products, and highly selective reactions and modern purification techniques allow preparation - in a single step - of chiral substances in 99% ee for many reaction types. After an explanation of the basic physical-organic principles of stereoselectivity, the authors provide a detailed, annotated glossary of stereochemical terms. A chapter on "Analytical Methods" provides a critical overview of the most common methods for analysis of stereoisomers. The authors then follow the 'tried-and-true' format of grouping the material by reaction type. Thus, there are four chapters on carbon-carbon bond forming reactions (enolate alkylations, organometal additions to carbonyls, aldol and Michael reactions, and cycloadditions and rearrangements), one chapter on reductions and hydroborations (carbon-hydrogen bond forming reactions), and one on oxidations (carbon-oxygen and carbon-nitrogen bond forming reactions). Leading references are provided to natural product synthesis that have been accomplished using a given reaction as a key step. In addition to tables of examples that show high selectivity, a transition state analysis is presented to explain - to the current level of understanding - the stereoselectivity of each reaction. In one case (Cram's rule) the evolution of the current theory is detailed from its first tentative (1952) postulate to the current Felkin-Anh-Heathcock formalism. For other reactions, only the currently accepted rationale is presented. Examination of these rationales also exposes the weaknesses of current theories, in that they cannot always explain the experimental observations. These shortcomings provide a challenge for future mechanistic investigations.
Considering the limited resources of our planet, earth-abundant elements will have to be explored increasingly in the future. This book highlights the uses of the most earth-abundant elements in catalysis and will be of interest to graduates, academic researchers and practitioners in catalysis.
The world is chiral. Most of the molecules in it are chiral, and asymmetric synthesis is an important means by which enantiopure chiral molecules may be obtained for study and sale. The aim of this book is to present a detailed analysis of the factors that govern stereoselectivity in organic reactions.