Download Free Stochastics And Quantum Mechanics Book in PDF and EPUB Free Download. You can read online Stochastics And Quantum Mechanics and write the review.

The principal intent of this monograph is to present in a systematic and self-con tained fashion the basic tenets, ideas and results of a framework for the consistent unification of relativity and quantum theory based on a quantum concept of spacetime, and incorporating the basic principles of the theory of stochastic spaces in combination with those of Born's reciprocity theory. In this context, by the physicial consistency of the present framework we mean that the advocated approach to relativistic quantum theory relies on a consistent probabilistic interpretation, which is proven to be a direct extrapolation of the conventional interpretation of nonrelativistic quantum mechanics. The central issue here is that we can derive conserved and relativistically convariant probability currents, which are shown to merge into their nonrelativistic counterparts in the nonrelativistic limit, and which at the same time explain the physical and mathe matical reasons behind the basic fact that no probability currents that consistently describe pointlike particle localizability exist in conventional relativistic quantum mechanics. Thus, it is not that we dispense with the concept oflocality, but rather the advanced central thesis is that the classical concept of locality based on point like localizability is inconsistent in the realm of relativistic quantum theory, and should be replaced by a concept of quantum locality based on stochastically formulated systems of covariance and related to the aforementioned currents.
We introduce the theory of chemical reaction networks and their relation to stochastic Petri nets — important ways of modeling population biology and many other fields. We explain how techniques from quantum mechanics can be used to study these models. This relies on a profound and still mysterious analogy between quantum theory and probability theory, which we explore in detail. We also give a tour of key results concerning chemical reaction networks and Petri nets.
over this stochastic space-time leads to the non local fields considered by G. V. Efimov. In other words, stochasticity of space-time (after being averaged on a large scale) as a self-memory makes the theory nonlocal. This allows one to consider in a unified way the effect of stochasticity (or nonlocality) in all physical processes. Moreover, the universal character of this hypothesis of space-time at small distances enables us to re-interpret the dynamics of stochastic particles and to study some important problems of the theory of stochastic processes [such as the relativistic description of diffusion, Feynman type processes, and the problem of the origin of self-turbulence in the motion of free particles within nonlinear (stochastic) mechanics]. In this direction our approach (Part II) may be useful in recent developments of the stochastic interpretation of quantum mechanics and fields due to E. Nelson, D. Kershaw, I. Fenyes, F. Guerra, de la Pena-Auerbach, J. -P. Vigier, M. Davidson, and others. In particular, as shown by N. Cufaro Petroni and J. -P. Vigier, within the discussed approach, a causal action-at-distance interpretation of a series of experiments by A. Aspect and his co-workers indicating a possible non locality property of quantum mechanics, may also be obtained. Aspect's results have recently inspired a great interest in different nonlocal theories and models devoted to an understanding of the implications of this nonlocality. This book consists of two parts.
Well suited as a textbook in the emerging field of stochastic limit, which is a new mathematical technique developed for solving nonlinear problems in quantum theory.
The quantum-mechanical few-body problem is of fundamental importance for all branches of microphysics and it has substantially broadened with the advent of modern computers. This book gives a simple, unified recipe to obtain precise solutions to virtually any few-body bound-state problem and presents its application to various problems in atomic, molecular, nuclear, subnuclear and solid state physics. The main ingredients of the methodology are a wave-function expansion in terms of correlated Gaussians and an optimization of the variational trial function by stochastic sampling. The book is written for physicists and, especially, for graduate students interested in quantum few-body physics.
This introductory survey of stochastic methods and techniques in quantum physics, functional analysis, probability theory, communications, and electrical engineering also serves as a useful and comprehensive reference volume. 1979 edition.
"Elegantly written, with obvious appreciation for fine points of higher mathematics...most notable is [the] author's effort to weave classical probability theory into [a] quantum framework." – The American Mathematical Monthly "This is an excellent volume which will be a valuable companion both for those who are already active in the field and those who are new to it. Furthermore there are a large number of stimulating exercises scattered through the text which will be invaluable to students." – Mathematical Reviews An Introduction to Quantum Stochastic Calculus aims to deepen our understanding of the dynamics of systems subject to the laws of chance both from the classical and the quantum points of view and stimulate further research in their unification. This is probably the first systematic attempt to weave classical probability theory into the quantum framework and provides a wealth of interesting features: The origin of Ito's correction formulae for Brownian motion and the Poisson process can be traced to communication relations or, equivalently, the uncertainty principle. Quantum stochastic interpretation enables the possibility of seeing new relationships between fermion and boson fields. Quantum dynamical semigroups as well as classical Markov semigroups are realized through unitary operator evolutions. The text is almost self-contained and requires only an elementary knowledge of operator theory and probability theory at the graduate level.
This is a textbook on stochastic quantization which was originally proposed by G. Parisi and Y. S. Wu in 1981 and then developed by many workers. I assume that the reader has finished a standard course in quantum field theory. The Parisi-Wu stochastic quantization method gives quantum mechanics as the thermal-equilibrium limit of a hypothetical stochastic process with respect to some fictitious time other than ordinary time. We can consider this to be a third method of quantization; remarkably different from the conventional theories, i. e, the canonical and path-integral ones. Over the past ten years, we have seen the technical merits of this method in quantizing gauge fields and in performing large numerical simulations, which have never been obtained by the other methods. I believe that the stochastic quantization method has the potential to extend the territory of quantum mechanics and of quantum field theory. However, I should remark that stochastic quantization is still under development through many mathematical improvements and physical applications, and also that the fictitious time of the theory is only a mathematical tool, for which we do not yet know its origin in the physical background. For these reasons, in this book, I attempt to describe its theoretical formulation in detail as well as practical achievements.
This book provides a systematic, self-contained treatment of the theory of quantum probability and quantum Markov processes for graduate students and researchers. Building a framework that parallels the development of classical probability, it aims to help readers up the steep learning curve of the quantum theory.
In spite of the impressive predictive power and strong mathematical structure of quantum mechanics, the theory has always suffered from important conceptual problems. Some of these have never been solved. Motivated by this state of affairs, a number of physicists have worked together for over thirty years to develop stochastic electrodynamics, a physical theory aimed at finding a conceptually satisfactory, realistic explanation of quantum phenomena. This is the first book to present a comprehensive review of stochastic electrodynamics, from its origins to present-day developments. After a general introduction for the non-specialist, a critical discussion is presented of the main results of the theory as well as of the major problems encountered. A chapter on stochastic optics and some interesting consequences for local realism and the Bell inequalities is included. In the final chapters the authors propose and develop a new version of the theory that brings it in closer correspondence with quantum mechanics and sheds some light on the wave aspects of matter and the linkage with quantum electrodynamics. Audience: The volume will be of interest to scholars and postgraduate students of theoretical and mathematical physics, foundations and philosophy of physics, and teachers of theoretical physics and quantum mechanics, electromagnetic theory, and statistical physics (stochastic processes).