Download Free Stochastic Visibility In Random Fields Book in PDF and EPUB Free Download. You can read online Stochastic Visibility In Random Fields and write the review.

The present monograph is a comprehensive summary of the research on visibility in random fields, which I have conducted with the late Professor Micha Yadin for over ten years. This research, which resulted in several published papers and technical reports (see bibliography), was motivated by some military problems, which were brought to our attention by Mr. Pete Shugart of the US Army TRADOC Systems Analysis Activity, presently called US Army TRADOC Analysis Command. The Director ofTRASANA at the time, the late Dr. Wilbur Payne, identified the problems and encouraged the support and funding of this research by the US Army. Research contracts were first administered through the Office of Naval Research, and subsequently by the Army Research Office. We are most grateful to all involved for this support and encouragement. In 1986 I administered a three-day workshop on problem solving in the area of sto chastic visibility. This workshop was held at the White Sands Missile Range facility. A set of notes with some software were written for this workshop. This workshop led to the incorporation of some of the methods discussed in the present book into the Army simulation package CASTFOREM. Several people encouraged me to extend those notes and write the present monograph on the level of those notes, so that the material will be more widely available for applications.
The author describes the current state of the art in the theory of invariant random fields. This theory is based on several different areas of mathematics, including probability theory, differential geometry, harmonic analysis, and special functions. The present volume unifies many results scattered throughout the mathematical, physical, and engineering literature, as well as it introduces new results from this area first proved by the author. The book also presents many practical applications, in particular in such highly interesting areas as approximation theory, cosmology and earthquake engineering. It is intended for researchers and specialists working in the fields of stochastic processes, statistics, functional analysis, astronomy, and engineering.
Correlated data arise in numerous contexts across a wide spectrum of subject-matter disciplines. Modeling such data present special challenges and opportunities that have received increasing scrutiny by the statistical community in recent years. In October 1996 a group of 210 statisticians and other scientists assembled on the small island of Nantucket, U. S. A. , to present and discuss new developments relating to Modelling Longitudinal and Spatially Correlated Data: Methods, Applications, and Future Direc tions. Its purpose was to provide a cross-disciplinary forum to explore the commonalities and meaningful differences in the source and treatment of such data. This volume is a compilation of some of the important invited and volunteered presentations made during that conference. The three days and evenings of oral and displayed presentations were arranged into six broad thematic areas. The session themes, the invited speakers and the topics they addressed were as follows: • Generalized Linear Models: Peter McCullagh-"Residual Likelihood in Linear and Generalized Linear Models" • Longitudinal Data Analysis: Nan Laird-"Using the General Linear Mixed Model to Analyze Unbalanced Repeated Measures and Longi tudinal Data" • Spatio---Temporal Processes: David R. Brillinger-"Statistical Analy sis of the Tracks of Moving Particles" • Spatial Data Analysis: Noel A. Cressie-"Statistical Models for Lat tice Data" • Modelling Messy Data: Raymond J. Carroll-"Some Results on Gen eralized Linear Mixed Models with Measurement Error in Covariates" • Future Directions: Peter J.
This third volume of case studies presents detailed applications of Bayesian statistical analysis, emphasising the scientific context. The papers were presented and discussed at a workshop held at Carnegie-Mellon University, and this volume - dedicated to the memory of Morrie Groot-reproduces six invited papers, each with accompanying invited discussion, and nine contributed papers with the focus on econometric applications.
This book presents a method of establishing explicit solutions to classical problems of calculating the best lower and upper mean-variance bounds. The following families of distributions are taken into account: arbitrary, symmetric, symmetric unimodal, and U-shaped. The book is addressed to students, researchers, and practitioners in statistics and applied probability. Most of the results are recent, and a significant part of them has not been published yet. Numerous open problems are stated in the text.
These notes represent our summary of much of the recent research that has been done in recent years on approximations and bounds that have been developed for compound distributions and related quantities which are of interest in insurance and other areas of application in applied probability. The basic technique employed in the derivation of many bounds is induc tive, an approach that is motivated by arguments used by Sparre-Andersen (1957) in connection with a renewal risk model in insurance. This technique is both simple and powerful, and yields quite general results. The bounds themselves are motivated by the classical Lundberg exponential bounds which apply to ruin probabilities, and the connection to compound dis tributions is through the interpretation of the ruin probability as the tail probability of a compound geometric distribution. The initial exponential bounds were given in Willmot and Lin (1994), followed by the nonexpo nential generalization in Willmot (1994). Other related work on approximations for compound distributions and applications to various problems in insurance in particular and applied probability in general is also discussed in subsequent chapters. The results obtained or the arguments employed in these situations are similar to those for the compound distributions, and thus we felt it useful to include them in the notes. In many cases we have included exact results, since these are useful in conjunction with the bounds and approximations developed.
This book consists of three parts: Part One is composed of two introductory chapters. The first chapter provides an instrumental varible interpretation of the state space time series algorithm originally proposed by Aoki (1983), and gives an introductory account for incorporating exogenous signals in state space models. The second chapter, by Havenner, gives practical guidance in apply ing this algorithm by one of the most experienced practitioners of the method. Havenner begins by summarizing six reasons state space methods are advanta geous, and then walks the reader through construction and evaluation of a state space model for four monthly macroeconomic series: industrial production in dex, consumer price index, six month commercial paper rate, and money stock (Ml). To single out one of the several important insights in modeling that he shares with the reader, he discusses in Section 2ii the effects of sampling er rors and model misspecification on successful modeling efforts. He argues that model misspecification is an important amplifier of the effects of sampling error that may cause symplectic matrices to have complex unit roots, a theoretical impossibility. Correct model specifications increase efficiency of estimators and often eliminate this finite sample problem. This is an important insight into the positive realness of covariance matrices; positivity has been emphasized by system engineers to the exclusion of other methods of reducing sampling error and alleviating what is simply a finite sample problem. The second and third parts collect papers that describe specific applications.
The papers in this volume discuss important methodological advances in several important areas, including multivariate failure time data and interval censored data. The book will be an indispensable reference for researchers and practitioners in biostatistics, medical research, and the health sciences.
The Athens Conference on Applied Probability and Time Series in 1995 brought together researchers from across the world. The published papers appear in two volumes. Volume I includes papers on applied probability in Honor of J.M. Gani. The topics include probability and probabilistic methods in recursive algorithms and stochastic models, Markov and other stochastic models such as Markov chains, branching processes and semi-Markov systems, biomathematical and genetic models, epidemilogical models including S-I-R (Susceptible-Infective-Removal), household and AIDS epidemics, financial models for option pricing and optimization problems, random walks, queues and their waiting times, and spatial models for earthquakes and inference on spatial models.