Download Free Stochastic Storage Processes Book in PDF and EPUB Free Download. You can read online Stochastic Storage Processes and write the review.

A self-contained treatment of stochastic processes arising from models for queues, insurance risk, and dams and data communication, using their sample function properties. The approach is based on the fluctuation theory of random walks, L vy processes, and Markov-additive processes, in which Wiener-Hopf factorisation plays a central role. This second edition includes results for the virtual waiting time and queue length in single server queues, while the treatment of continuous time storage processes is thoroughly revised and simplified. With its prerequisite of a graduate-level course in probability and stochastic processes, this book can be used as a text for an advanced course on applied probability models.
This book is based on a course I have taught at Cornell University since 1965. The primary topic of this course was queueing theory, but related topics such as inventories, insurance risk, and dams were also included. As a text I used my earlier book, Queues and Inventories (John Wiley, New York, 1965). Over the years the emphasis in this course shifted from detailed analysis of probability models to the study of stochastic processes that arise from them, and the subtitle of the text, "A Study of Their Basic Stochastic Processes," became a more appropriate description of the course. My own research into the fluctuation theory for U:vy processes provided a new perspective on the topics discussed, and enabled me to reorganize the material. The lecture notes used for the course went through several versions, and the final version became this book. A detailed description of my approach will be found in the Introduction. I have not attempted to give credit to authors of individual results. Readers interested in the historical literature should consult the Selected Bibliography given at the end of the Introduction. The original work in this area is presented here with simpler proofs that make full use of the special features of the underlying stochastic processes. The same approach makes it possible to provide several new results. Thanks are due to Kathy King for her excellent typing of the manuscript.
Stochastic Image Processing provides the first thorough treatment of Markov and hidden Markov random fields and their application to image processing. Although promoted as a promising approach for over thirty years, it has only been in the past few years that the theory and algorithms have developed to the point of providing useful solutions to old and new problems in image processing. Markov random fields are a multidimensional extension of Markov chains, but the generalization is complicated by the lack of a natural ordering of pixels in multidimensional spaces. Hidden Markov fields are a natural generalization of the hidden Markov models that have proved essential to the development of modern speech recognition, but again the multidimensional nature of the signals makes them inherently more complicated to handle. This added complexity contributed to the long time required for the development of successful methods and applications. This book collects together a variety of successful approaches to a complete and useful characterization of multidimensional Markov and hidden Markov models along with applications to image analysis. The book provides a survey and comparative development of an exciting and rapidly evolving field of multidimensional Markov and hidden Markov random fields with extensive references to the literature.
Stochastic processes are necessary ingredients for building models of a wide variety of phenomena exhibiting time varying randomness. This text offers easy access to this fundamental topic for many students of applied sciences at many levels. It includes examples, exercises, applications, and computational procedures. It is uniquely useful for beginners and non-beginners in the field. No knowledge of measure theory is presumed.
Let X(t) be the level of the storage process at time t; X(0) = 0. Starting at time 0, the level X(t) increases linearly with slope s sub i for a random length of time (the input period) after which it decreases linearly with slope g sub j for a random time (the output period). Subsequently, the process continues to alternate between periods of input and output where the input-output transitions are governed by a transition matrix P, and the output-input transitions by Q. For each input slope i and output slope j, there corresponds an input period distribution F sub i and an output period distribution M sub j which is exponential. When the zero level is a positive recurrent state, the steady state joint distributions of the level of the process and the slope is obtained. The means of these distributions are determined. The mean nonempty period is also determined. When the zero level is a transient state, the limiting distribution of the storage level is obtained.
Decision-making is an important task no matter the industry. Operations research, as a discipline, helps alleviate decision-making problems through the extraction of reliable information related to the task at hand in order to come to a viable solution. Integrating stochastic processes into operations research and management can further aid in the decision-making process for industrial and management problems. Stochastic Processes and Models in Operations Research emphasizes mathematical tools and equations relevant for solving complex problems within business and industrial settings. This research-based publication aims to assist scholars, researchers, operations managers, and graduate-level students by providing comprehensive exposure to the concepts, trends, and technologies relevant to stochastic process modeling to solve operations research problems.