Download Free Stochastic Processes In Polymeric Fluids Book in PDF and EPUB Free Download. You can read online Stochastic Processes In Polymeric Fluids and write the review.

This book consists of two strongly interweaved parts: the mathematical theory of stochastic processes and its applications to molecular theories of polymeric fluids. The comprehensive mathematical background provided in the first section will be equally useful in many other branches of engineering and the natural sciences. The second part provides readers with a more direct understanding of polymer dynamics, allowing them to identify exactly solvable models more easily, and to develop efficient computer simulation algorithms in a straightforward manner. In view of the examples and applications to problems taken from the front line of science, this volume may be used both as a basic textbook or as a reference book. Program examples written in FORTRAN are available via ftp from ftp.springer.de/pub/chemistry/polysim/.
Since their first introduction in natural sciences through the work of Einstein on Brownian motion in 1905 and further works, in particular by Langevin, Smoluchowski and others, stochastic processes have been used in several areas of science and technology. For example, they have been applied in chemical studies, or in fluid turbulence and for combustion and reactive flows. The articles in this book provide a general and unified framework in which stochastic processes are presented as modeling tools for various issues in engineering, physics and chemistry, with particular focus on fluid mechanics and notably dispersed two-phase flows. The aim is to develop what can referred to as stochastic modeling for a whole range of applications.
Non-Newtonian flows and their numerical simulations have generated an abundant literature, as well as many publications and references to which can be found in this volume’s articles. This abundance of publications can be explained by the fact that non-Newtonian fluids occur in many real life situations: the food industry, oil & gas industry, chemical, civil and mechanical engineering, the bio-Sciences, to name just a few. Mathematical and numerical analysis of non-Newtonian fluid flow models provide challenging problems to partial differential equations specialists and applied computational mathematicians alike. This volume offers investigations. Results and conclusions that will no doubt be useful to engineers and computational and applied mathematicians who are focused on various aspects of non-Newtonian Fluid Mechanics. New review of well-known computational methods for the simulation viscoelastic and viscoplastic types Discusses new numerical methods that have proven to be more efficient and more accurate than traditional methods Articles that discuss the numerical simulation of particulate flow for viscoelastic fluids
Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations.
This volume contains recent research papers presented at the international workshop on OC Probabilistic Methods in FluidsOCO held in Swansea. The central problems considered were turbulence and the NavierOCoStokes equations but, as is now well known, these classical problems are deeply intertwined with modern studies of stochastic partial differential equations, jump processes and random dynamical systems. The volume provides a snapshot of current studies in a field where the applications range from the design of aircraft through the mathematics of finance to the study of fluids in porous media."
This volume contains recent research papers presented at the international workshop on “Probabilistic Methods in Fluids” held in Swansea. The central problems considered were turbulence and the Navier-Stokes equations but, as is now well known, these classical problems are deeply intertwined with modern studies of stochastic partial differential equations, jump processes and random dynamical systems. The volume provides a snapshot of current studies in a field where the applications range from the design of aircraft through the mathematics of finance to the study of fluids in porous media.
This book introduces the theory of stochastic processes with applications taken from physics and finance. Fundamental concepts like the random walk or Brownian motion but also Levy-stable distributions are discussed. Applications are selected to show the interdisciplinary character of the concepts and methods. In the second edition of the book a discussion of extreme events ranging from their mathematical definition to their importance for financial crashes was included. The exposition of basic notions of probability theory and the Brownian motion problem as well as the relation between conservative diffusion processes and quantum mechanics is expanded. The second edition also enlarges the treatment of financial markets. Beyond a presentation of geometric Brownian motion and the Black-Scholes approach to option pricing as well as the econophysics analysis of the stylized facts of financial markets, an introduction to agent based modeling approaches is given.
Multiscale problems naturally pose severe challenges for computational science and engineering. The smaller scales must be well resolved over the range of the larger scales. Challenging multiscale problems are very common and are found in e.g. materials science, fluid mechanics, electrical and mechanical engineering. Homogenization, subgrid modelling, heterogeneous multiscale methods, multigrid, multipole, and adaptive algorithms are examples of methods to tackle these problems. This volume is an overview of current mathematical and computational methods for problems with multiple scales with applications in chemistry, physics and engineering.
This volume records the presentations and discussions at the Second Royal Society-Unilever Indo-UK Forum on 'Dynamics of Complex Fluids' which was the culmination of the six-month programme on this topic organised at the Issac Newton Institute for Mathematical Sciences, Cambridge University.The authors of this important volume present an up-to-date, wide-ranging view on developments in the analysis of complex fluid behaviour. Emphasis is placed upon the relation between small-scale structure and large-scale response: this brings together the approaches of molecular physics and continuum mechanics.Experiments, constitutive models and computer simulations are combined to yield new insights into the flow behaviour of polymer melts and solutions, colloidal and neutral particle suspensions, and pastes and soils.