Download Free Stochastic Models Of Production Inventory Systems Book in PDF and EPUB Free Download. You can read online Stochastic Models Of Production Inventory Systems and write the review.

This book has a dual purpose?serving as an advanced textbook designed to prepare doctoral students to do research on the mathematical foundations of inventory theory, and as a reference work for those already engaged in such research. All chapters conclude with exercises that either solidify or extend the concepts introduced.
Outlining the major issues that have to be addressed in the design and operation of each type of system, this new text explores the stochastic models of a wide range of manufacturing systems. It covers flow lines, job shops, transfer lines, flexible manufacturing systems, flexible assembly systems, cellular systems, and more. For professionals working in the area of manufacturing system modelling.
This handbook surveys important stochastic problems and models in manufacturing system operations and their stochastic analysis. Using analytical models to design and control manufacturing systems and their operations entail critical stochastic performance analysis as well as integrated optimization models of these systems. Topics deal with the areas of facilities planning, transportation, and material handling systems, logistics and supply chain management, and integrated productivity and quality models covering: • Stochastic modeling and analysis of manufacturing systems • Design, analysis, and optimization of manufacturing systems • Facilities planning, transportation, and material handling systems analysis • Production planning, scheduling systems, management, and control • Analytical approaches to logistics and supply chain management • Integrated productivity and quality models, and their analysis • Literature surveys of issues relevant in manufacturing systems • Case studies of manufacturing system operations and analysis Today’s manufacturing system operations are becoming increasingly complex. Advanced knowledge of best practices for treating these problems is not always well known. The purpose of the book is to create a foundation for the development of stochastic models and their analysis in manufacturing system operations. Given the handbook nature of the volume, introducing basic principles, concepts, and algorithms for treating these problems and their solutions is the main intent of this handbook. Readers unfamiliar with these research areas will be able to find a research foundation for studying these problems and systems.
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
The Economic Order Quantity (EOQ) inventory model first appeared in 1913, and in its centennial, it is still one of the most important inventory models. Despite the abundance of both classical and new research results, there was (until now) no comprehensive reference source that provides the state-of-the-art findings on both theoretical and applied research on the EOQ and its related models. This edited handbook puts together all these interesting works and the respective insights into an edited volume. The handbook contains papers which explore both the deterministic and the stochastic EOQ-model based problems and applications. It is organized into three parts: Part I presents three papers that provide an introduction and review of various EOQ related models. Part II includes four technical analyses on single-echelon EOQ-model based inventory problems. Part III consists of five papers on applications of the EOQ model for multi-echelon supply chain inventory analysis.
Manufacturing systems rarely perform exactly as expected and predicted. Unexpected events, such as order changes, equipment failures and product defects, affect the performance of the system and complicate decision-making. This volume is devoted to the development of analytical methods aiming at responding to variability in a way that limits its corrupting effects on system performance. The book includes fifteen novel chapters that mostly focus on the development and analysis of performance evaluation models of manufacturing systems using decomposition-based methods, Markovian and queuing analysis, simulation, and inventory control approaches. They are organized into four distinct sections to reflect their shared viewpoints: factory design, unreliable production lines, queuing network models, production planning and assembly.
Up to now, demand fulfillment in make-to-stock manufacturing is usually handled by advanced planning systems. Orders are fulfilled on the basis of simple rules or deterministic planning approaches not taking into account demand fluctuations. The consideration of different customer classes as it is often done today requires more sophisticated approaches explicitly considering stochastic influences. This book reviews current literature, presents a framework that addresses revenue management and demand fulfillment at once and introduces new stochastic approaches for demand fulfillment in make-to-stock manufacturing based on the ideas of the revenue management literature.