Download Free Stochastic Models In Population Genetics Book in PDF and EPUB Free Download. You can read online Stochastic Models In Population Genetics and write the review.

These are" notes based on courses in Theoretical Population Genetics given at the University of Texas at Houston during the winter quarter, 1974, and at the University of Wisconsin during the fall semester, 1976. These notes explore problems of population genetics and evolution involving stochastic processes. Biological models and various mathematical techniques are discussed. Special emphasis is given to the diffusion method and an attempt is made to emphasize the underlying unity of various problems based on the Kolmogorov backward equation. A particular effort was made to make the subject accessible to biology students who are not familiar with stochastic processes. The references are not exhaustive but were chosen to provide a starting point for the reader interested in pursuing the subject further. Acknowledgement I would like to use this opportunity to express my thanks to Drs. J. F. Crow, M. Nei and W. J. Schull for their hospitality during my stays at their universities. I am indebted to Dr. M. Kimura for his continuous encouragement. My thanks also go to the small but resolute groups of.students, visitors and colleagues whose enthusiasm was a great source of encouragement. I am especially obliged to Dr. Martin Curie-Cohen and Dr. Crow for reading a large part eX the manuscript and making many valuable comments. Special gratitude is expressed to Miss Sumiko Imamiya for her patience and endurance and for her efficient preparation of the manuscript.
This work reflects sixteen hours of lectures delivered by the author at the 2009 St Flour summer school in probability. It provides a rapid introduction to a range of mathematical models that have their origins in theoretical population genetics. The models fall into two classes: forwards in time models for the evolution of frequencies of different genetic types in a population; and backwards in time (coalescent) models that trace out the genealogical relationships between individuals in a sample from the population. Some, like the classical Wright-Fisher model, date right back to the origins of the subject. Others, like the multiple merger coalescents or the spatial Lambda-Fleming-Viot process are much more recent. All share a rich mathematical structure. Biological terms are explained, the models are carefully motivated and tools for their study are presented systematically.
Stochastic Models in Biology describes the usefulness of the theory of stochastic process in studying biological phenomena. The book describes analysis of biological systems and experiments though probabilistic models rather than deterministic methods. The text reviews the mathematical analyses for modeling different biological systems such as the random processes continuous in time and discrete in state space. The book also discusses population growth and extinction through Malthus' law and the work of MacArthur and Wilson. The text then explains the dynamics of a population of interacting species. The book also addresses population genetics under systematic evolutionary pressures known as deterministic equations and genetic changes in a finite population known as stochastic equations. The text then turns to stochastic modeling of biological systems at the molecular level, particularly the kinetics of biochemical reactions. The book also presents various useful equations such as the differential equation for generating functions for birth and death processes. The text can prove valuable for biochemists, cellular biologists, and researchers in the medical and chemical field who are tasked to perform data analysis.
Pioneering works; Clasical single-locus problems; Molecular population genetics; Multilocus problems; Structured populations; Methematical problems.
This book presents a systematic treatment of Markov chains, diffusion processes and state space models, as well as alternative approaches to Markov chains through stochastic difference equations and stochastic differential equations. It illustrates how these processes and approaches are applied to many problems in genetics, carcinogenesis, AIDS epidemiology and other biomedical systems.One feature of the book is that it describes the basic MCMC (Markov chain and Monte Carlo) procedures and illustrates how to use the Gibbs sampling method and the multilevel Gibbs sampling method to solve many problems in genetics, carcinogenesis, AIDS and other biomedical systems.As another feature, the book develops many state space models for many genetic problems, carcinogenesis, AIDS epidemiology and HIV pathogenesis. It shows in detail how to use the multilevel Gibbs sampling method to estimate (or predict) simultaneously the state variables and the unknown parameters in cancer chemotherapy, carcinogenesis, AIDS epidemiology and HIV pathogenesis. As a matter of fact, this book is the first to develop many state space models for many genetic problems, carcinogenesis and other biomedical problems.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. O. K. Chesterton. The Scandal of Father 'The Hermit Qad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gu!ik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Prologue; Acknowledgments; Contents; 1. An Introduction to Mathematical Probability with Applications in Mendelian Genetics; 1.1 Introduction; 1.2 Mathematical Probability in Mendelian Genetics; 1.3 Examples of Finite Probability Spaces; Example 1.3.1: An Equal Frequency Model; Example 1.3.2: Partitions of an Abstract Set; Example 1.3.3: A Deterministic Case; Example 1.3.4: Inheritance of Eye Color and Sex; 1.4 Elementary Combinatorial Analysis; 1.5 The Binomial Distribution; Example 1.5.1: Distribution of Boys and Girls in Families of Size N.
The idea of organizing a symposium on mathematical models in biology came to some colleagues, members of the Accademia dei Lincei, in order to point out the importance of mathematics not only for supplying instruments for the elaboration and the evaluation of experimental data, but also for discussing the possibility of developing mathematical formulations of biological problems. This appeared particularly appropriate for genetics, where mathematical models have been of historical importance. When the organizing work had started, it became clear to us that the classic studies of Vito Volterra (who was also a Member of the Academy and its President from 1923 to 1926) might be conƯ sidered a further reason to have the meeting in Rome at the Accademia dei Lincei; thus the meeting is dedicated to his memory. Biology, in its manifold aspects proved to Se ~ difficult object for an exhaustive approach; thus it became necessary for practical reasons to make a choice of problems. Therefore not all branches of biology have been represented. The proceedings of the symposium, as a whole, assume a knowledge of mathematics on the part of the reader; however the problem of teaching mathematics to biologists was the subject of a round table discussion, not recorded in these proceedings. On this were brought up some basic points to be recommended to teachers on an international basis, and a statement was prepared for circulation. The Organizing Committee TABLE OF CONTENTS TOPIC I MODELS OF NATUPAL SELECTION ... ." ...
This expository book presents the mathematical description of evolutionary models of populations subject to interactions (e.g. competition) within the population. The author includes both models of finite populations, and limiting models as the size of the population tends to infinity. The size of the population is described as a random function of time and of the initial population (the ancestors at time 0). The genealogical tree of such a population is given. Most models imply that the population is bound to go extinct in finite time. It is explained when the interaction is strong enough so that the extinction time remains finite, when the ancestral population at time 0 goes to infinity. The material could be used for teaching stochastic processes, together with their applications. Étienne Pardoux is Professor at Aix-Marseille University, working in the field of Stochastic Analysis, stochastic partial differential equations, and probabilistic models in evolutionary biology and population genetics. He obtained his PhD in 1975 at University of Paris-Sud.
The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.