Download Free Stochastic Modeling And Analysis Of Pathway Regulation And Dynamics Book in PDF and EPUB Free Download. You can read online Stochastic Modeling And Analysis Of Pathway Regulation And Dynamics and write the review.

Stochastic Dynamics for Systems Biology is one of the first books to provide a systematic study of the many stochastic models used in systems biology. The book shows how the mathematical models are used as technical tools for simulating biological processes and how the models lead to conceptual insights on the functioning of the cellular processing
The first comprehensive treatment of probabilistic Boolean networks, unifying different strands of current research and addressing emerging issues.
This book addresses a number of questions from the perspective of complex systems: How can we quantitatively understand the life phenomena? How can we model life systems as complex bio-molecular networks? Are there any methods to clarify the relationships among the structures, dynamics and functions of bio-molecular networks? How can we statistically analyse large-scale bio-molecular networks? Focusing on the modeling and analysis of bio-molecular networks, the book presents various sophisticated mathematical and statistical approaches. The life system can be described using various levels of bio-molecular networks, including gene regulatory networks, and protein-protein interaction networks. It first provides an overview of approaches to reconstruct various bio-molecular networks, and then discusses the modeling and dynamical analysis of simple genetic circuits, coupled genetic circuits, middle-sized and large-scale biological networks, clarifying the relationships between the structures, dynamics and functions of the networks covered. In the context of large-scale bio-molecular networks, it introduces a number of statistical methods for exploring important bioinformatics applications, including the identification of significant bio-molecules for network medicine and genetic engineering. Lastly, the book describes various state-of-art statistical methods for analysing omics data generated by high-throughput sequencing. This book is a valuable resource for readers interested in applying systems biology, dynamical systems or complex networks to explore the truth of nature.
While technological advancements have been critical in allowing researchers to obtain more and better quality data about cellular processes and signals, the design and practical application of computational models of genomic regulation continues to be a challenge. Emerging Research in the Analysis and Modeling of Gene Regulatory Networks presents a compilation of recent and emerging research topics addressing the design and use of technology in the study and simulation of genomic regulation. Exploring both theoretical and practical topics, this publication is an essential reference source for students, professionals, and researchers working in the fields of genomics, molecular biology, bioinformatics, and drug development.
This textbook presents solid tools for in silico engineering biology, offering students a step-by-step guide to mastering the smart design of metabolic pathways. The first part explains the Design-Build-Test-Learn-cycle engineering approach to biology, discussing the basic tools to model biological and chemistry-based systems. Using these basic tools, the second part focuses on various computational protocols for metabolic pathway design, from enzyme selection to pathway discovery and enumeration. In the context of industrial biotechnology, the final part helps readers understand the challenges of scaling up and optimisation. By working with the free programming language Scientific Python, this book provides easily accessible tools for studying and learning the principles of modern in silico metabolic pathway design. Intended for advanced undergraduates and master’s students in biotechnology, biomedical engineering, bioinformatics and systems biology students, the introductory sections make it also useful for beginners wanting to learn the basics of scientific coding and find real-world, hands-on examples.
An introduction to biological networks and methods for their analysis Analysis of Biological Networks is the first book of its kind to provide readers with a comprehensive introduction to the structural analysis of biological networks at the interface of biology and computer science. The book begins with a brief overview of biological networks and graph theory/graph algorithms and goes on to explore: global network properties, network centralities, network motifs, network clustering, Petri nets, signal transduction and gene regulation networks, protein interaction networks, metabolic networks, phylogenetic networks, ecological networks, and correlation networks. Analysis of Biological Networks is a self-contained introduction to this important research topic, assumes no expert knowledge in computer science or biology, and is accessible to professionals and students alike. Each chapter concludes with a summary of main points and with exercises for readers to test their understanding of the material presented. Additionally, an FTP site with links to author-provided data for the book is available for deeper study. This book is suitable as a resource for researchers in computer science, biology, bioinformatics, advanced biochemistry, and the life sciences, and also serves as an ideal reference text for graduate-level courses in bioinformatics and biological research.
The emerging, multi-disciplinary field of systems biology is devoted to the study of the relationships between various parts of a biological system, and computer modeling plays a vital role in the drive to understand the processes of life from an holistic viewpoint. Advancements in experimental technologies in biology and medicine have generated an enormous amount of biological data on the dependencies and interactions of many different molecular cell processes, fueling the development of numerous computational methods for exploring this data. The mathematical formalism of Petri net theory is able to encompass many of these techniques. This essential text/reference presents a comprehensive overview of cutting-edge research in applications of Petri nets in systems biology, with contributions from an international selection of experts. Those unfamiliar with the field are also provided with a general introduction to systems biology, the foundations of biochemistry, and the basics of Petri net theory. Further chapters address Petri net modeling techniques for building and analyzing biological models, as well as network prediction approaches, before reviewing the applications to networks of different biological classification. Topics and features: investigates the modular, qualitative modeling of regulatory networks using Petri nets, and examines an Hybrid Functional Petri net simulation case study; contains a glossary of the concepts and notation used in the book, in addition to exercises at the end of each chapter; covers the topological analysis of metabolic and regulatory networks, the analysis of models of signaling networks, and the prediction of network structure; provides a biological case study on the conversion of logical networks into Petri nets; discusses discrete modeling, stochastic modeling, fuzzy modeling, dynamic pathway modeling, genetic regulatory network modeling, and quantitative analysis techniques; includes a Foreword by Professor Jens Reich, Professor of Bioinformatics at Humboldt University and Max Delbrück Center for Molecular Medicine in Berlin. This unique guide to the modeling of biochemical systems using Petri net concepts will be of real utility to researchers and students of computational biology, systems biology, bioinformatics, computer science, and biochemistry.
The second edition of Comprehensive Biotechnology, Six Volume Set continues the tradition of the first inclusive work on this dynamic field with up-to-date and essential entries on the principles and practice of biotechnology. The integration of the latest relevant science and industry practice with fundamental biotechnology concepts is presented with entries from internationally recognized world leaders in their given fields. With two volumes covering basic fundamentals, and four volumes of applications, from environmental biotechnology and safety to medical biotechnology and healthcare, this work serves the needs of newcomers as well as established experts combining the latest relevant science and industry practice in a manageable format. It is a multi-authored work, written by experts and vetted by a prestigious advisory board and group of volume editors who are biotechnology innovators and educators with international influence. All six volumes are published at the same time, not as a series; this is not a conventional encyclopedia but a symbiotic integration of brief articles on established topics and longer chapters on new emerging areas. Hyperlinks provide sources of extensive additional related information; material authored and edited by world-renown experts in all aspects of the broad multidisciplinary field of biotechnology Scope and nature of the work are vetted by a prestigious International Advisory Board including three Nobel laureates Each article carries a glossary and a professional summary of the authors indicating their appropriate credentials An extensive index for the entire publication gives a complete list of the many topics treated in the increasingly expanding field
The occurrence of 5-methylcytosine in DNA was first described in 1948 by Hotchkiss (see first chapter). Recognition of its possible physiologi cal role in eucaryotes was first suggested in 1964 by Srinivasan and Borek (see first chapter). Since then work in a great many laboratories has established both the ubiquity of 5-methylcytosine and the catholicity of its possible regulatory function. The explosive increase in the number of publications dealing with DNA methylation attests to its importance and makes it impossible to write a comprehensive coverage of the literature within the scope of a general review. Since the publication of the 3 most recent books dealing with the subject (DNA methylation by Razin A. , Cedar H. and Riggs A. D. , 1984 Springer Verlag; Molecular Biology of DNA methylation by Adams R. L. P. and Burdon R. H. , 1985 Springer Verlag; Nucleic Acids Methylation, UCLA Symposium suppl. 128, 1989) considerable progress both in the techniques and results has been made in the field of DNA methylation. Thus we asked several authors to write chapters dealing with aspects of DNA methyla tion in which they are experts. This book should be most useful for students, teachers as well as researchers in the field of differentiation and gene regulation. We are most grateful to all our colleagues who were willing to spend much time and effort on the publication of this book. We also want to express our gratitude to Yan Chim Jost for her help in preparing this book.
This book focuses on the analysis of cancer dynamics and the mathematically based synthesis of anticancer therapy. It summarizes the current state-of-the-art in this field and clarifies common misconceptions about mathematical modeling in cancer. Additionally, it encourages closer cooperation between engineers, physicians and mathematicians by showing the clear benefits of this without stating unrealistic goals. Development of therapy protocols is realized from an engineering point of view, such as the search for a solution to a specific control-optimization problem. Since in the case of cancer patients, consecutive measurements providing information about the current state of the disease are not available, the control laws are derived for an open loop structure. Different forms of therapy are incorporated into the models, from chemotherapy and antiangiogenic therapy to immunotherapy and gene therapy, but the class of models introduced is broad enough to incorporate other forms of therapy as well. The book begins with an analysis of cell cycle control, moving on to control effects on cell population and structured models and finally the signaling pathways involved in carcinogenesis and their influence on therapy outcome. It also discusses the incorporation of intracellular processes using signaling pathway models, since the successful treatment of cancer based on analysis of intracellular processes, might soon be a reality. It brings together various aspects of modeling anticancer therapies, which until now have been distributed over a wide range of literature. Written for researchers and graduate students interested in the use of mathematical and engineering tools in biomedicine with special emphasis on applications in cancer diagnosis and treatment, this self-contained book can be easily understood with only a minimal basic knowledge of control and system engineering methods as well as the biology of cancer. Its interdisciplinary character and the authors’ extensive experience in cooperating with clinicians and biologists make it interesting reading for researchers from control and system engineering looking for applications of their knowledge. Systems and molecular biologists as well as clinicians will also find new inspiration for their research.