Download Free Stochastic Large Scale Engineering Systems Book in PDF and EPUB Free Download. You can read online Stochastic Large Scale Engineering Systems and write the review.

This book focuses on the class of large-scale stochastic systems, which has dominated the attention of many academic and research groups. It discusses distributed-sensor networks, decentralized detection theory, and econometric models with integrated and decentralized policymakers.
This book focuses on the class of large-scale stochastic systems, which has dominated the attention of many academic and research groups. It discusses distributed-sensor networks, decentralized detection theory, and econometric models with integrated and decentralized policymakers.
Advancements in the technology and availability of data sources have led to the `Big Data' era. Working with large data offers the potential to uncover more fine-grained patterns and take timely and accurate decisions, but it also creates a lot of challenges such as slow training and scalability of machine learning models. One of the major challenges in machine learning is to develop efficient and scalable learning algorithms, i.e., optimization techniques to solve large scale learning problems. Stochastic Optimization for Large-scale Machine Learning identifies different areas of improvement and recent research directions to tackle the challenge. Developed optimisation techniques are also explored to improve machine learning algorithms based on data access and on first and second order optimisation methods. Key Features: Bridges machine learning and Optimisation. Bridges theory and practice in machine learning. Identifies key research areas and recent research directions to solve large-scale machine learning problems. Develops optimisation techniques to improve machine learning algorithms for big data problems. The book will be a valuable reference to practitioners and researchers as well as students in the field of machine learning.
With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation.
"Bridges the gap between laboratory research and practical applications in industry and power utilities-clearly organized into three distinct sections that cover basic theories and concepts, execution of principles, and innovative new techniques. Includes new chapters detailing industrial uses and isues of hazard and safety, and review excercises to accompany each chpter."
"Covering virtually all areas of distribution engineering, this complete reference work examines the unique behavior of utilities and provides the practical knowledge necessary to solve real-world distribution problems. "
Emphasizing a practical conception of system unbalances, basic circuits, and calculations, this essential reference/text presents the foundations of symmetrical components with a review of per unit (percent), phasors, and polarity--keeping the mathematics as simple as possible throughout. According to IEEE Electrical Insulation Magazine, this book "...provides students and practicing engineers with a fundamental understanding of the method of symmetrical components and its applications in three-phase electrical systems. . .A useful feature of this book. . .is the incorporation of numerous examples in the text and 30 pages of problems."
This newly revised and updated reference presents sensible approaches to the design, selection, and usage of high-voltage circuit breakers-highlighting compliance issues concerning new and aging equipment to the evolving standards set forth by the American National Standards Institute and the International Electrotechnical Commission. This edition features the latest advances in mechanical and dielectric design and application from a simplified qualitative perspective. High Voltage Circuit Breakers: Design and Applications features new material on contact resistance, insulating film coatings, and fretting; temperature at the point of contact; short-time heating of copper; erosion and electromagnetic forces on contacts; closing speed and circuit breaker requirements; "weld" break and contact bounce; factors influencing dielectric strength; air, SF6, vacuum, and solid insulation; and dielectric loss and partial discharges, and includes updated chapters on capacitance switching; switching series and shunt reactors; temporary overvoltages; and the benefits of condition monitoring.
A presentation of developments in microcontroller technology, providing lucid instructions on its many and varied applications. It focuses on the popular eight-bit microcontroller, the 8051, and the 83C552. The text outlines a systematic methodology for small-scale, control-dominated embedded systems, and is accompanied by a disk of all the example problems included in the book.
This work presents traditional methods and current techniques of incorporating the computer into closed-loop dynamic systems control, combining conventional transfer function design and state variable concepts. Digital Control Designer - an award-winning software program which permits the solution of highly complex problems - is available on the CR