Download Free Stochastic Decomposition Book in PDF and EPUB Free Download. You can read online Stochastic Decomposition and write the review.

Motivation Stochastic Linear Programming with recourse represents one of the more widely applicable models for incorporating uncertainty within in which the SLP optimization models. There are several arenas model is appropriate, and such models have found applications in air line yield management, capacity planning, electric power generation planning, financial planning, logistics, telecommunications network planning, and many more. In some of these applications, modelers represent uncertainty in terms of only a few seenarios and formulate a large scale linear program which is then solved using LP software. However, there are many applications, such as the telecommunications planning problem discussed in this book, where a handful of seenarios do not capture variability well enough to provide a reasonable model of the actual decision-making problem. Problems of this type easily exceed the capabilities of LP software by several orders of magnitude. Their solution requires the use of algorithmic methods that exploit the structure of the SLP model in a manner that will accommodate large scale applications.
This book provides an in-depth account of modern methods used to bound the supremum of stochastic processes. Starting from first principles, it takes the reader to the frontier of current research. This second edition has been completely rewritten, offering substantial improvements to the exposition and simplified proofs, as well as new results. The book starts with a thorough account of the generic chaining, a remarkably simple and powerful method to bound a stochastic process that should belong to every probabilist’s toolkit. The effectiveness of the scheme is demonstrated by the characterization of sample boundedness of Gaussian processes. Much of the book is devoted to exploring the wealth of ideas and results generated by thirty years of efforts to extend this result to more general classes of processes, culminating in the recent solution of several key conjectures. A large part of this unique book is devoted to the author’s influential work. While many of the results presented are rather advanced, others bear on the very foundations of probability theory. In addition to providing an invaluable reference for researchers, the book should therefore also be of interest to a wide range of readers.
A computationally oriented comparison of solution algorithms for two stage and jointly chance constrained stochastic linear programming problems, this is the first book to present comparative computational results with several major stochastic programming solution approaches. The following methods are considered: regularized decomposition, stochastic decomposition and successive discrete approximation methods for two stage problems; cutting plane methods, and a reduced gradient method for jointly chance constrained problems. The first part of the book introduces the algorithms, including a unified approach to decomposition methods and their regularized counterparts. The second part addresses computer implementation of the methods, describes a testing environment based on a model management system, and presents comparative computational results with the various algorithms. Emphasis is on the computational behavior of the algorithms.
In Stochastic Dynamics of Structures, Li and Chen present a unified view of the theory and techniques for stochastic dynamics analysis, prediction of reliability, and system control of structures within the innovative theoretical framework of physical stochastic systems. The authors outline the fundamental concepts of random variables, stochastic process and random field, and orthogonal expansion of random functions. Readers will gain insight into core concepts such as stochastic process models for typical dynamic excitations of structures, stochastic finite element, and random vibration analysis. Li and Chen also cover advanced topics, including the theory of and elaborate numerical methods for probability density evolution analysis of stochastic dynamical systems, reliability-based design, and performance control of structures. Stochastic Dynamics of Structures presents techniques for researchers and graduate students in a wide variety of engineering fields: civil engineering, mechanical engineering, aerospace and aeronautics, marine and offshore engineering, ship engineering, and applied mechanics. Practicing engineers will benefit from the concise review of random vibration theory and the new methods introduced in the later chapters. "The book is a valuable contribution to the continuing development of the field of stochastic structural dynamics, including the recent discoveries and developments by the authors of the probability density evolution method (PDEM) and its applications to the assessment of the dynamic reliability and control of complex structures through the equivalent extreme-value distribution." —A. H-S. Ang, NAE, Hon. Mem. ASCE, Research Professor, University of California, Irvine, USA "The authors have made a concerted effort to present a responsible and even holistic account of modern stochastic dynamics. Beyond the traditional concepts, they also discuss theoretical tools of recent currency such as the Karhunen-Loeve expansion, evolutionary power spectra, etc. The theoretical developments are properly supplemented by examples from earthquake, wind, and ocean engineering. The book is integrated by also comprising several useful appendices, and an exhaustive list of references; it will be an indispensable tool for students, researchers, and practitioners endeavoring in its thematic field." —Pol Spanos, NAE, Ryon Chair in Engineering, Rice University, Houston, USA
CONTENIDO: Basic - Linear Programming Prerequisites - Nonlinear Programming Prerequisites - Single-Stage SLP models - Models involving probability functions - Quantile functions, Value at Risk - Models based on expectation - Models built with deviation measures - Modeling risk and opportunity - Risk measures - Multi-stage SLP models - The general SLP with recourse - The two-stage SLP - The multi-stage SLP - Algorithms - Single-stage models with separate probability functions - Single-stage models with joint probability functions - Single-stage models based on expectation - Single-stage models involving VaR - Single-stage models with deviation measures - Two-stage recourse models - Multistage recourse models - Modeling systems for SLP.
This volume contains eighteen selected papers presented at the Second International Conference on Stochastic Structural Dynamics, which are related to new practical applications in the field. This and a companion volume, related to new theoretical developments, constitute the proceedings of the conference, and reflect the state of the art of the rapidly developing subject. The conference was held in Boca Raton, Florida during May 9-11, 1990 hosted by the Center for Applied Stochastic Research of Florida Atlantic University. A total of 20 technical sessions were organized, and attended by eighty participants from 12 countries. Special emphases of the conference were placed on two areas: applications to earthquake engineering and stochastic stability of nonlinear systems. Two sessions were dedicated to the memory of late Professor Frank Kozin, one of the founders and most active contributors to the stochastic stability theory. We are indebted to the National Center for Earthquake Engineering Research (NCEER) for financial support. Most credit belongs to each of the authors whose contributions were the very basis for the undoubted success of the conference. We are grateful to the reviewers who carefully refereed the contributions for these two volumes. Our special thanks are due to Mrs. Christine Mikulski, who carried out all the necessary secretarial tasks associated with the conference with dedication.
From the Preface... The preparation of this book started in 2004, when George B. Dantzig and I, following a long-standing invitation by Fred Hillier to contribute a volume to his International Series in Operations Research and Management Science, decided finally to go ahead with editing a volume on stochastic programming. The field of stochastic programming (also referred to as optimization under uncertainty or planning under uncertainty) had advanced significantly in the last two decades, both theoretically and in practice. George Dantzig and I felt that it would be valuable to showcase some of these advances and to present what one might call the state-of- the-art of the field to a broader audience. We invited researchers whom we considered to be leading experts in various specialties of the field, including a few representatives of promising developments in the making, to write a chapter for the volume. Unfortunately, to the great loss of all of us, George Dantzig passed away on May 13, 2005. Encouraged by many colleagues, I decided to continue with the book and edit it as a volume dedicated to George Dantzig. Management Science published in 2005 a special volume featuring the “Ten most Influential Papers of the first 50 Years of Management Science.” George Dantzig’s original 1955 stochastic programming paper, “Linear Programming under Uncertainty,” was featured among these ten. Hearing about this, George Dantzig suggested that his 1955 paper be the first chapter of this book. The vision expressed in that paper gives an important scientific and historical perspective to the book. Gerd Infanger
The aim of stochastic programming is to find optimal decisions in problems which involve uncertain data. This field is currently developing rapidly with contributions from many disciplines including operations research, mathematics, and probability. At the same time, it is now being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors aim to present a broad overview of the main themes and methods of the subject. Its prime goal is to help students develop an intuition on how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. In this extensively updated new edition there is more material on methods and examples including several new approaches for discrete variables, new results on risk measures in modeling and Monte Carlo sampling methods, a new chapter on relationships to other methods including approximate dynamic programming, robust optimization and online methods. The book is highly illustrated with chapter summaries and many examples and exercises. Students, researchers and practitioners in operations research and the optimization area will find it particularly of interest. Review of First Edition: "The discussion on modeling issues, the large number of examples used to illustrate the material, and the breadth of the coverage make 'Introduction to Stochastic Programming' an ideal textbook for the area." (Interfaces, 1998)
This rapidly developing field encompasses many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors present a broad overview of the main themes and methods of the subject, thus helping students develop an intuition for how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The early chapters introduce some worked examples of stochastic programming, demonstrate how a stochastic model is formally built, develop the properties of stochastic programs and the basic solution techniques used to solve them. The book then goes on to cover approximation and sampling techniques and is rounded off by an in-depth case study. A well-paced and wide-ranging introduction to this subject.
Christian Küchler studies various aspects of the stability of stochastic optimization problems as well as approximation and decomposition methods in stochastic programming. In particular, the author presents an extension of the Nested Benders decomposition algorithm related to the concept of recombining scenario trees.