Download Free Stochastic Control In Insurance Book in PDF and EPUB Free Download. You can read online Stochastic Control In Insurance and write the review.

Yet again, here is a Springer volume that offers readers something completely new. Until now, solved examples of the application of stochastic control to actuarial problems could only be found in journals. Not any more: this is the first book to systematically present these methods in one volume. The author starts with a short introduction to stochastic control techniques, then applies the principles to several problems. These examples show how verification theorems and existence theorems may be proved, and that the non-diffusion case is simpler than the diffusion case. Schmidli’s brilliant text also includes a number of appendices, a vital resource for those in both academic and professional settings.
Applied Stochastic Models and Control for Finance and Insurance presents at an introductory level some essential stochastic models applied in economics, finance and insurance. Markov chains, random walks, stochastic differential equations and other stochastic processes are used throughout the book and systematically applied to economic and financial applications. In addition, a dynamic programming framework is used to deal with some basic optimization problems. The book begins by introducing problems of economics, finance and insurance which involve time, uncertainty and risk. A number of cases are treated in detail, spanning risk management, volatility, memory, the time structure of preferences, interest rates and yields, etc. The second and third chapters provide an introduction to stochastic models and their application. Stochastic differential equations and stochastic calculus are presented in an intuitive manner, and numerous applications and exercises are used to facilitate their understanding and their use in Chapter 3. A number of other processes which are increasingly used in finance and insurance are introduced in Chapter 4. In the fifth chapter, ARCH and GARCH models are presented and their application to modeling volatility is emphasized. An outline of decision-making procedures is presented in Chapter 6. Furthermore, we also introduce the essentials of stochastic dynamic programming and control, and provide first steps for the student who seeks to apply these techniques. Finally, in Chapter 7, numerical techniques and approximations to stochastic processes are examined. This book can be used in business, economics, financial engineering and decision sciences schools for second year Master's students, as well as in a number of courses widely given in departments of statistics, systems and decision sciences.
Stochastic Optimal Control (SOC)—a mathematical theory concerned with minimizing a cost (or maximizing a payout) pertaining to a controlled dynamic process under uncertainty—has proven incredibly helpful to understanding and predicting debt crises and evaluating proposed financial regulation and risk management. Stochastic Optimal Control and the U.S. Financial Debt Crisis analyzes SOC in relation to the 2008 U.S. financial crisis, and offers a detailed framework depicting why such a methodology is best suited for reducing financial risk and addressing key regulatory issues. Topics discussed include the inadequacies of the current approaches underlying financial regulations, the use of SOC to explain debt crises and superiority over existing approaches to regulation, and the domestic and international applications of SOC to financial crises. Principles in this book will appeal to economists, mathematicians, and researchers interested in the U.S. financial debt crisis and optimal risk management.
This textbook provides a broad overview of the present state of insurance mathematics and some related topics in risk management, financial mathematics and probability. Both non-life and life aspects are covered. The emphasis is on probability and modeling rather than statistics and practical implementation. Aimed at the graduate level, pointing in part to current research topics, it can potentially replace other textbooks on basic non-life insurance mathematics and advanced risk management methods in non-life insurance. Based on chapters selected according to the particular topics in mind, the book may serve as a source for introductory courses to insurance mathematics for non-specialists, advanced courses for actuarial students, or courses on probabilistic aspects of risk. It will also be useful for practitioners and students/researchers in related areas such as finance and statistics who wish to get an overview of the general area of mathematical modeling and analysis in insurance.
Uncertainty presents significant challenges in the reasoning about and controlling of complex dynamical systems. To address this challenge, numerous researchers are developing improved methods for stochastic analysis. This book presents a diverse collection of some of the latest research in this important area. In particular, this book gives an overview of some of the theoretical methods and tools for stochastic analysis, and it presents the applications of these methods to problems in systems theory, science, and economics.
This book consists of a series of new, peer-reviewed papers in stochastic processes, analysis, filtering and control, with particular emphasis on mathematical finance, actuarial science and engineering. Paper contributors include colleagues, collaborators and former students of Robert Elliott, many of whom are world-leading experts and have made fundamental and significant contributions to these areas.This book provides new important insights and results by eminent researchers in the considered areas, which will be of interest to researchers and practitioners. The topics considered will be diverse in applications, and will provide contemporary approaches to the problems considered. The areas considered are rapidly evolving. This volume will contribute to their development, and present the current state-of-the-art stochastic processes, analysis, filtering and control.Contributing authors include: H Albrecher, T Bielecki, F Dufour, M Jeanblanc, I Karatzas, H-H Kuo, A Melnikov, E Platen, G Yin, Q Zhang, C Chiarella, W Fleming, D Madan, R Mamon, J Yan, V Krishnamurthy.
As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.
The main purpose of the book is to show how a viscosity approach can be used to tackle control problems in insurance. The problems covered are the maximization of survival probability as well as the maximization of dividends in the classical collective risk model. The authors consider the possibility of controlling the risk process by reinsurance as well as by investments. They show that optimal value functions are characterized as either the unique or the smallest viscosity solution of the associated Hamilton-Jacobi-Bellman equation; they also study the structure of the optimal strategies and show how to find them. The viscosity approach was widely used in control problems related to mathematical finance but until quite recently it was not used to solve control problems related to actuarial mathematical science. This book is designed to familiarize the reader on how to use this approach. The intended audience is graduate students as well as researchers in this area.
In a world dominated by uncertainty, modeling and understanding the optimal behavior of agents is of the utmost importance. Many problems in economics, finance, and actuarial science naturally require decision makers to undertake choices in stochastic environments. Examples include optimal individual consumption and retirement choices, optimal management of portfolios and risk, hedging, optimal timing issues in pricing American options, and investment decisions. Stochastic control theory provides the methods and results to tackle all such problems. This book is a collection of the papers published in the Special Issue "Applications of Stochastic Optimal Control to Economics and Finance", which appeared in the open access journal Risks in 2019. It contains seven peer-reviewed papers dealing with stochastic control models motivated by important questions in economics and finance. Each model is rigorously mathematically funded and treated, and the numerical methods are employed to derive the optimal solution. The topics of the book's chapters range from optimal public debt management to optimal reinsurance, real options in energy markets, and optimal portfolio choice in partial and complete information settings. From a mathematical point of view, techniques and arguments of dynamic programming theory, filtering theory, optimal stopping, one-dimensional diffusions and multi-dimensional jump processes are used.
Stochastic optimization problems arise in decision-making problems under uncertainty, and find various applications in economics and finance. On the other hand, problems in finance have recently led to new developments in the theory of stochastic control. This volume provides a systematic treatment of stochastic optimization problems applied to finance by presenting the different existing methods: dynamic programming, viscosity solutions, backward stochastic differential equations, and martingale duality methods. The theory is discussed in the context of recent developments in this field, with complete and detailed proofs, and is illustrated by means of concrete examples from the world of finance: portfolio allocation, option hedging, real options, optimal investment, etc. This book is directed towards graduate students and researchers in mathematical finance, and will also benefit applied mathematicians interested in financial applications and practitioners wishing to know more about the use of stochastic optimization methods in finance.