Download Free Stochastic Analysis For Gaussian Random Processes And Fields Book in PDF and EPUB Free Download. You can read online Stochastic Analysis For Gaussian Random Processes And Fields and write the review.

Stochastic Analysis for Gaussian Random Processes and Fields: With Applications presents Hilbert space methods to study deep analytic properties connecting probabilistic notions. In particular, it studies Gaussian random fields using reproducing kernel Hilbert spaces (RKHSs).The book begins with preliminary results on covariance and associated RKHS
A timely and comprehensive treatment of random field theory with applications across diverse areas of study Level Sets and Extrema of Random Processes and Fields discusses how to understand the properties of the level sets of paths as well as how to compute the probability distribution of its extremal values, which are two general classes of problems that arise in the study of random processes and fields and in related applications. This book provides a unified and accessible approach to these two topics and their relationship to classical theory and Gaussian processes and fields, and the most modern research findings are also discussed. The authors begin with an introduction to the basic concepts of stochastic processes, including a modern review of Gaussian fields and their classical inequalities. Subsequent chapters are devoted to Rice formulas, regularity properties, and recent results on the tails of the distribution of the maximum. Finally, applications of random fields to various areas of mathematics are provided, specifically to systems of random equations and condition numbers of random matrices. Throughout the book, applications are illustrated from various areas of study such as statistics, genomics, and oceanography while other results are relevant to econometrics, engineering, and mathematical physics. The presented material is reinforced by end-of-chapter exercises that range in varying degrees of difficulty. Most fundamental topics are addressed in the book, and an extensive, up-to-date bibliography directs readers to existing literature for further study. Level Sets and Extrema of Random Processes and Fields is an excellent book for courses on probability theory, spatial statistics, Gaussian fields, and probabilistic methods in real computation at the upper-undergraduate and graduate levels. It is also a valuable reference for professionals in mathematics and applied fields such as statistics, engineering, econometrics, mathematical physics, and biology.
No detailed description available for "Numerical Modelling of Random Processes and Fields".
This book is devoted to a systematic analysis of asymptotic behavior of distributions of various typical functionals of Gaussian random variables and fields. The text begins with an extended introduction, which explains fundamental ideas and sketches the basic methods fully presented later in the book. Good approximate formulas and sharp estimates of the remainders are obtained for a large class of Gaussian and similar processes. The author devotes special attention to the development of asymptotic analysis methods, emphasizing the method of comparison, the double-sum method and the method of moments. The author has added an extended introduction and has significantly revised the text for this translation, particularly the material on the double-sum method.
Simulation has now become an integral part of research and development across many fields of study. Despite the large amounts of literature in the field of simulation and modeling, one recurring problem is the issue of accuracy and confidence level of constructed models. By outlining the new approaches and modern methods of simulation of stochastic processes, this book provides methods and tools in measuring accuracy and reliability in functional spaces. The authors explore analysis of the theory of Sub-Gaussian (including Gaussian one) and Square Gaussian random variables and processes and Cox processes. Methods of simulation of stochastic processes and fields with given accuracy and reliability in some Banach spaces are also considered. Provides an analysis of the theory of Sub-Gaussian (including Gaussian one) and Square Gaussian random variables and processes Contains information on the study of the issue of accuracy and confidence level of constructed models not found in other books on the topic Provides methods and tools in measuring accuracy and reliability in functional spaces
This volume contains twenty refereed papers presented at the 4th Seminar on Stochastic Processes, Random Fields and Applications, which took place in Ascona, Switzerland, from May 2002. The seminar focused mainly on stochastic partial differential equations, stochastic models in mathematical physics, and financial engineering. The book will be a valuable resource for researchers in stochastic analysis and professionals interested in stochastic methods in finance and insurance.
An important treatment of the geometric properties of sets generated by random fields, including a comprehensive treatment of the mathematical basics of random fields in general. It is a standard reference for all researchers with an interest in random fields, whether they be theoreticians or come from applied areas.
This book serves as a standard reference, making this area accessible not only to researchers in probability and statistics, but also to graduate students and practitioners. The book assumes only a first-year graduate course in probability. Each chapter begins with a brief overview and concludes with a wide range of exercises at varying levels of difficulty. The authors supply detailed hints for the more challenging problems, and cover many advances made in recent years.
This title contains lectures that offer an introduction to modern topics in stochastic partial differential equations and bring together experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic PDEs.