Download Free Sterilization Of Food In Retort Pouches Book in PDF and EPUB Free Download. You can read online Sterilization Of Food In Retort Pouches and write the review.

The subject of sterilization of food in cans has been studied both experimentally and theoretically, but limited work has been undertaken to study the sterilization of food in pouches. This book examines the interaction between fluid mechanics, heat transfer and microbial inactivation during sterilization of food in pouches. Such interaction is complex and if ignored would lead to incorrect information not only on food sterility but also on food quality.
This new edition discusses the physical and engineering aspects of the thermal processing of packaged foods and examines the methods which have been used to establish the time and temperature of processes suitable to achieve adequate sterilization or pasteurization of the packaged food. The third edition is totally renewed and updated, including new concepts and areas that are relevant for thermal food processing: This edition is formed by 22 chapters—arranged in five parts—that maintain great parts of the first and second editions The First part includes five chapters analyzing different topics associated to heat transfer mechanism during canning process, kinetic of microbial death, sterilization criteria and safety aspect of thermal processing. The second part, entitled Thermal Food Process Evaluation Techniques, includes six chapters and discusses the main process evaluation techniques. The third part includes six chapters treating subjects related with pressure in containers, simultaneous sterilization and thermal food processing equipment. The fourth part includes four chapters including computational fluid dynamics and multi-objective optimization. The fifth part, entitled Innovative Thermal Food Processing, includes a chapter focused on two innovative processes used for food sterilization such high pressure with thermal sterilization and ohmic heating. Thermal Processing of Pa ckaged Foods, Third Edition is intended for a broad audience, from undergraduate to post graduate students, scientists, engineers and professionals working for the food industry.
A comprehensive review of the many new developments in the growing food processing and packaging field Revised and updated for the first time in a decade, this book discusses packaging implications for recent nonthermal processing technologies and mild food preservation such as high pressure processing, irradiation, pulsed electric fields, microwave sterilization, and other hurdle technologies. It reviews typical nonthermal processes, the characteristics of food products after nonthermal treatments, and packaging parameters to preserve the quality and enhance the safety of the products. In addition, the critical role played by packaging materials during the development of a new nonthermal processed product, and how the package is used to make the product attractive to consumers, is discussed. Packaging for Nonthermal Processing of Food, Second Edition provides up to date assessments of consumer attitudes to nonthermal processes and novel packaging (both in the U.S. and Europe). It offers a brand new chapter covering smart packaging, including thermal, microbial, chemical, and light sensing biosensors, radio frequency identification systems, and self-heating and cooling packaging. There is also a new chapter providing an overview of packaging laws and regulations in the United States and Europe. Covers the packaging types required for all major nonthermal technologies, including high pressure processing, pulsed electric field, irradiation, ohmic heating, and others Features a brand new chapter on smart packaging, including biosensors (thermal-, microbial-, chemical- and light-sensing), radio frequency identification systems, and self-heating and cooling packaging Additional chapters look at the current regulatory scene in the U.S. and Europe, as well as consumer attitudes to these novel technologies Editors and contributors bring a valuable mix of industry and research experience Packaging for Nonthermal Processing of Food, Second Edition offers many benefits to the food industry by providing practical information on the relationship between new processes and packaging materials, to academia as a source of fundamental knowledge about packaging science, and to regulatory agencies as an avenue for acquiring a deeper understanding of the packaging requirements for new processes.
This is the latest and most authoritative documentation of current scientific knowledge regarding the health effects of thermal food processing. Authors from all over Europe and the USA provide an international perspective, weighing up the risks and benefits. In addition, the contributors outline those areas where further research is necessary.
Thermobacteriology in Food Processing, Second Edition focuses on the principles involved in sterilization processes for canned goods and pasteurization of foods. The book first ponders on organisms of greatest importance in the spoilage of canned foods and food pasteurization and bacteriological examination of spoiled canned foods. Discussions focus on toxin-producing microorganisms, pathogenic microorganisms, bacteriological examination, classification of spore-bearing bacteria with reference to oxygen requirements, classification of food with respect to acidity, and interpretation of observations. The text then takes a look at contamination and its control, producing, harvesting, and cleaning spores for thermal resistance determinations, and death of bacteria subjected to moist heat. The manuscript tackles thermal resistance of bacteria and thermal process evaluation, including important terms and equations, basic considerations, general method, and conversion of heat penetration data. Topics include change of initial food temperature when the retort temperature remains the same, integrated lethality of heat at all points in the container, heat penetration and processing parameters, and determination of process lethality requirement. The publication is a valuable reference for researchers interested in thermobacteriology in food processing.
The use of Instant Controlled Pressure Drop (D.I.C.) in food processing operations is relatively new when compared with other conventional or innovative technologies. In addition to existing applications such as drying, texturing and decontamination, D.I.C. technology has been shown to be highly appropriate for an ever-growing number of uses and with a wide range of raw materials. Some examples are post-harvesting and drying of fruits and vegetables; cereal steaming; extraction of essential oils and active molecules, where D.I.C. may be combined with supercritical fluids, ultrasound or microwaves; and the hydrolysis of cellulose and the transesterification of lipids. This book presents a complete picture of current knowledge on the use of D.I.C. in food processing, preservation and extraction. It provides a comprehensive compilation, summarizing the fundamentals of D.I.C. technology, current developments, new research findings, safety precautions and environmental impacts. It will also contribute to widening the scope of D.I.C. technology through the inclusion of some much-needed examples of industrial applications. Each chapter of the book is complementary to the other chapters. They all are based on presentations of reputed international researchers and address the latest progress in the field. Professor Karim ALLAF heads a research team working on the intensification of eco-processes at La Rochelle University. He is a physicist and an expert in the thermodynamics of “instantaneity”. Dr. Tamara ALLAF is the R&D manager of ABCAR-DIC Process Company. A chemical engineer, she obtained her Ph.D. in innovative extraction processes.
Americans eat more processed foods than anyone else in the world. We also spend more on military research. These two seemingly unrelated facts are inextricably linked. If you ever wondered how ready-to-eat foods infiltrated your kitchen, you’ll love this entertaining romp through the secret military history of practically everything you buy at the supermarket. In a nondescript Boston suburb, in a handful of low buildings buffered by trees and a lake, a group of men and women spend their days researching, testing, tasting, and producing the foods that form the bedrock of the American diet. If you stumbled into the facility, you might think the technicians dressed in lab coats and the shiny kitchen equipment belonged to one of the giant food conglomerates responsible for your favorite brand of frozen pizza or microwavable breakfast burritos. So you’d be surprised to learn that you’ve just entered the U.S. Army Natick Soldier Systems Center, ground zero for the processed food industry. Ever since Napoleon, armies have sought better ways to preserve, store, and transport food for battle. As part of this quest, although most people don’t realize it, the U.S. military spearheaded the invention of energy bars, restructured meat, extended-life bread, instant coffee, and much more. But there’s been an insidious mission creep: because the military enlisted industry—huge corporations such as ADM, ConAgra, General Mills, Hershey, Hormel, Mars, Nabisco, Reynolds, Smithfield, Swift, Tyson, and Unilever—to help develop and manufacture food for soldiers on the front line, over the years combat rations, or the key technologies used in engineering them, have ended up dominating grocery store shelves and refrigerator cases. TV dinners, the cheese powder in snack foods, cling wrap . . . The list is almost endless. Now food writer Anastacia Marx de Salcedo scrutinizes the world of processed food and its long relationship with the military—unveiling the twists, turns, successes, failures, and products that have found their way from the armed forces’ and contractors’ laboratories into our kitchens. In developing these rations, the army was looking for some of the very same qualities as we do in our hectic, fast-paced twenty-first-century lives: portability, ease of preparation, extended shelf life at room temperature, affordability, and appeal to even the least adventurous eaters. In other words, the military has us chowing down like special ops. What is the effect of such a diet, eaten—as it is by soldiers and most consumers—day in and day out, year after year? We don’t really know. We’re the guinea pigs in a giant public health experiment, one in which science and technology, at the beck and call of the military, have taken over our kitchens.
Thermal processing remains the most important method of food preservation in use today, and the scale of the industry is immense. The large scale of these production operations makes it more important than ever that the process is performed perfectly every time: failure will lead to product deterioration and loss of sales at best, and at worst to serious illness or death. This volume is a definitive modern-day reference for all those involved in thermal processing. It covers all of the essential information regarding the preservation of food products by heat. It includes all types of food product, from those high in acid and given a mild heat process to the low-acid sterilised foods that require a full botulinum cook. Different chapters deal with the manufacturing steps from raw material microbiology, through various processing regimes, validation methods, packaging, incubation testing and spoilage incidents. The authors have extensive knowledge of heat preservation covering all parts of the world and represent organisations with formidable reputations in this field. This book is an essential resource for all scientists and technologists in the food manufacturing industry as well as researchers and students of food science and technology.
The protection and preservation of a product, the launch of new products or re-launch of existing products, perception of added-value to products or services, and cost reduction in the supply chain are all objectives of food packaging. Taking into consideration the requirements specific to different products, how can one package successfully meet all of these goals? Food Packaging Technology provides a contemporary overview of food processing and packaging technologies. Covering the wide range of issues you face when developing innovative food packaging, the book includes: Food packaging strategy, design, and development Food biodeterioation and methods of preservation Packaged product quality and shelf life Logistical packaging for food marketing systems Packaging materials and processes The battle rages over which type of container should be used for which application. It is therefore necessary to consider which materials, or combination of materials and processes will best serve the market and enhance brand value. Food Packaging Technology gives you the tools to determine which form of packaging will meet your business goals without compromising the safety of your product.