Download Free Stereoselective Heterocycle Synthesis Via Alkene Difunctionalization Book in PDF and EPUB Free Download. You can read online Stereoselective Heterocycle Synthesis Via Alkene Difunctionalization and write the review.

This book investigates the use of palladium modified by bulky ligands as catalysts for new chemical transformations that rapidly assemble several classes of complex heterocyles. It documents the development of new chemical reactions involving carbon–carbon (C‒C) and carbon–halogen (C‒X) bond formation in the context of alkene difunctionalization and dearomatization reactions. Due to the ubiquity of heterocycles in bioactive natural products and life-improving pharmaceutical treatments, a long-term goal for synthetic organic chemists has been to develop novel and creative heterocycle syntheses that illicit a high degree of product diversity and are characterized by mild reaction conditions and limited waste production. A considerable fraction of leading pharmaceutical drugs contain at least one heterocycle within their chemical structure, and their prevalence in these technologies is strong evidence that the fundamental curiosities of organic chemistry lead to real-world solutions for the health and wellness of the global population.
Synthesis of Saturated Heterocycles via Metal-Catalyzed Alkene Carboamination or Carboalkoxylation Reactions, by John P. Wolfe Synthesis of Saturated Heterocycles via Metal-Catalyzed Alkene Diamination, Aminoalkoxylation, or Dialkoxylation Reactions, by Sherry R. Chemler Synthesis of Heterocycles via Metal-Catalyzed Wacker-Type Oxidative Cyclization Reactions of Alkoxy- or Amino-Alkenes, by Wanbin Zhang Synthesis of Saturated Heterocycles via Metal-Catalyzed Hydroamination or Hydroalkoxylation Reactions, by Lisa D. Julian Synthesis of Saturated Heterocycles via Metal-Catalyzed Allylic Alkylation Reactions, by Aaron Aponick Synthesis of Heterocycles via Metal-Catalyzed Cascade/Domino Reactions that Generate a C–N or C–O Bond, by Mark Lautens Synthesis of Saturated Heterocycles via Metal-Catalyzed Formal Cycloaddition Reactions that Generate a C–N or C–O Bond, by Jerome Waser
This book is a compilation of the recent applications of palladium catalysts in organic synthesis. The book demonstrates that it is a highly dynamic research field. This methodology has emerged as a powerful tool for the efficient and chemoselective synthesis of heterocyclic molecules. In the past few years, several strategies have been pointed out to pursue more efficient, sustainable, and environment friendly chemical processes. Among those strategies, catalysis and the design of new processes that avoid the use of toxic reagents have been the focus of intense research.
Hypervalent Iodine Chemistry is the first comprehensive text covering all of the main aspects of the chemistry of organic and inorganic polyvalent iodine compounds, including applications in chemical research, medicine, and industry. Providing a comprehensive overview of the preparation, properties, and synthetic applications of this important class of reagents, the text is presented in the following way: The introductory chapter provides a historical background and describes the general classification of iodine compounds, nomenclature, hypervalent bonding, structural features, and the principles of reactivity of polyvalent iodine compounds. Chapter 2 gives a detailed description of the preparative methods and structural features of all known classes of organic and inorganic derivatives of polyvalent iodine. Chapter 3, the key chapter of the book, deals with the many applications of hypervalent iodine reagents in organic synthesis. Chapter 4 describes the most recent achievements in hypervalent iodine catalysis. Chapter 5 deals with recyclable polymer-supported and nonpolymeric hypervalent iodine reagents. Chapter 6 covers the "green" reactions of hypervalent iodine reagents under solvent-free conditions or in aqueous solutions. The final chapter provides an overview of the important practical applications of polyvalent iodine compounds in medicine and industry. This book is aimed at all chemists interested in iodine compounds, including academic and industrial researchers in inorganic, organic, physical, medicinal, and biological chemistry. It will be particularly useful to synthetic organic and inorganic chemists, including graduate and advanced undergraduate students. It comprehensively covers the green chemistry aspects of hypervalent iodine chemistry, making it especially useful for industrial chemists.
At the very latest, with the award of the 2001 Nobel Prize for work on asymmetric oxidation, there has been a need for a comprehensive book on such methods. Edited by J.-E. Backvall, one of the world's leaders in the field, this book fills that gap by covering the topic, from classical to green chemistry methods. He has put together a plethora of well-established authors from all over the world who cover every important aspect in high-quality contributions -- whether aerobic oxidation or transition metal-catalyzed epoxidation of alkenes. By providing an overview of this huge topic, this book represents an unparalleled aid for any chemist working in the field. Chapters include: Recent Developments in the Osmium-Catalyzed Dihydroxylation of Olefins Transition Metal-Catalyzed Epoxidation of Alkenes Organocatalytic Oxidation - Ketone-Catalyzed Asymmetric Epoxidation of Olefins Modern Oxidation of Alcohols using environmentally Benign Oxidants Aerobic Oxidations and Related Reactions Catalyzed by N-Hydroxyphthalimide Ruthenium-Catalyzed Oxidation of Alkenes, Alcohols, Amines, Amides, b-Lactams, Phenols, and Hydrocarbons Selective Oxidations of Sulfides and Amines Liquid Phase Oxidation Reactions Catalyzed by Polyoxometalates Oxidation of Carbonyl Compounds Mn-catalysed Oxidation with Hydrogen Peroxide
The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students
The extraordinary potential of fluorine-containing molecules in medicinal chemistry and chemical biology has been recognized by researchers outside of the traditional fluorine chemistry field, and thus a new wave of fluorine chemistry is rapidly expanding its biomedical frontiers. With several of the best selling drugs in the world crucially containing fluorine atoms, the incorporation of fluorine to drug leads has become an essential practice in biomedical research, especially for drug design and discovery as well as development. Focusing on the unique and significant roles that fluorine plays in medicinal chemistry and chemical biology, this book reviews recent advances and future prospects in this rapidly developing field. Topics covered include: Discovery and development of fluorine containing drugs and drug candidates. New and efficient synthetic methods for medicinal chemistry and the optimisation of fluorine-containing drug candidates. Structural and chemical biology of fluorinated amino acids and peptides. Fluorine labels as probes in metabolic study, protein engineering and clinical diagnosis. Applications of 19F NMR spectroscopy in biomedical research. An appendix presents an invaluable index of all fluorine-containing drugs that have been approved by the US Food and Drug Administration, including information on structure and pharmaceutical action. Fluorine in Medicinal Chemistry and Chemical Biology will serve as an excellent reference source for graduate students as well as academic and industrial researchers who want to take advantage of fluorine in biomedical research.
The continued and evolving significance of boron chemistry to the wider chemical community is demonstrated by the international and interdisciplinary nature of the research reported in this book. Contemporary Boron Chemistry encompasses inorganic and organic compounds as well as polymers, solid-state materials, medicinal aspects and theoretical studies. Covering many areas of chemistry with boron at its centre, topics include applications to polyolefin catalysis, medicine, materials and polymers; boron cluster chemistry, including carboranes and metal-containing clusters; organic and inorganic chemistry of species containing only 1 or 2 boron atoms; and theoretical studies of boron-containing compounds. New materials with novel optical and electronic properties are also discussed. Comprehensive and up to date, graduates and researchers in a wide range of fields, particularly those in organometallic and organic chemistry and materials science, will welcome this book.
Stereoselective Synthesis of Tetrasubstituted Alkenes via Torquoselectivity-Controlled Olefination of Carbonyl Compounds with Ynolates, by Mitsuru Shindo and Kenji Matsumoto.- Stereoselective Synthesis of Z-Alkenes, by Woon-Yew Siau, Yao Zhang and Yu Zhao.- Stereoselective Synthesis of Mono-fluoroalkenes, by Shoji Hara.- Recent Advances in Stereoselective Synthesis of 1,3-Dienes, by Michael De Paolis, Isabelle Chataigner and Jacques Maddaluno.- Selective Olefination of Carbonyl Compounds via Metal-Catalyzed Carbene Transfer from Diazo Reagents, by Yang Hu and X. Peter Zhang.- Selective Alkene Metathesis in the Total Synthesis of Complex Natural Product, by Xiaoguang Lei and Houhua Li.- Olefination Reactions of Phosphorus-Stabilized Carbon Nucleophiles, by Yonghong Gu and Shi-Kai Tian.- Alkene Synthesis Through Transition Metal-Catalyzed Cross-Coupling of N-Tosylhydrazones, by Yan Zhang and Jianbo Wang.