Download Free Stellar Physics Book in PDF and EPUB Free Download. You can read online Stellar Physics and write the review.

That trees should have been cut down to provide paper for this book was an ecological afIront. From a book review. - Anthony Blond (in the Spectator, 1983) The first modern text on our subject, Structure and Evolution of the Stars, was published over thirty years ago. In it, Martin Schwarzschild described numerical experiments that successfully reproduced most of the observed properties of the majority of stars seen in the sky. He also set the standard for a lucid description of the physics of stellar interiors. Ten years later, in 1968, John P. Cox's tw~volume monograph Principles of Stellar Structure appeared, as did the more specialized text Principles of Stellar Evolution and Nuc1eosynthesis by Donald D. Clayton-and what a difference ten years had made. The field had matured into the basic form that it remains today. The past twenty-plus years have seen this branch of astrophysics flourish and develop into a fundamental pillar of modern astrophysics that addresses an enormous variety of phenomena. In view of this it might seem foolish to offer another text of finite length and expect it to cover any more than a fraction of what should be discussed to make it a thorough and self-contained reference. Well, it doesn't. Our specific aim is to introduce only the fundamentals of stellar astrophysics. You will find little reference here to black holes, millisecond pulsars, and other "sexy" objects.
The Sun as a Guide to Stellar Physics illustrates the significance of the Sun in understanding stars through anexamination of the discoveries and insights gained from solar physics research. Ranging from theories to modelingand from numerical simulations to instrumentation and data processing, the book provides an overview of whatwe currently understand and how the Sun can be a model for gaining further knowledge about stellar physics.Providing both updates on recent developments in solar physics and applications to stellar physics, this bookstrengthens the solar–stellar connection and summarizes what we know about the Sun for the stellar, space, andgeophysics communities. - Applies observations, theoretical understanding, modeling capabilities and physical processes first revealed by the sun to the study of stellar physics - Illustrates how studies of Proxima Solaris have led to progress in space science, stellar physics and related fields - Uses characteristics of solar phenomena as a guide for understanding the physics of stars
An Introduction to Stellar Astrophysics aspires to provide the reader with an intermediate knowledge on stars whilst focusing mostly on the explanation of the functioning of stars by using basic physical concepts and observational results. The book is divided into seven chapters, featuring both core and optional content: Basic concepts Stellar Formation Radiative Transfer in Stars Stellar Atmospheres Stellar Interiors Nucleosynthesis and Stellar Evolution and Chemically Peculiar Stars and Diffusion. Student-friendly features include: Detailed examples to help the reader better grasp the most important concepts A list of exercises is given at the end of each chapter and answers to a selection of these are presented. Brief recalls of the most important physical concepts needed to properly understand stars. A summary for each chapter Optional and advanced sections are included which may be skipped without interfering with the flow of the core content. This book is designed to cover the most important aspects of stellar astrophysics inside a one semester (or half-year) course and as such is relevant for advanced undergraduate students following a first course on stellar astrophysics, in physics or astronomy programs. It will also serve as a basic reference for a full-year course as well as for researchers working in related fields.
Describes how stars respond to microscopic physics in the advanced stages of their evolution with many numerical examples and illustrations.
A complete and comprehensive treatment of the physics of the stellar interior and the underlying fundamental processes and parameters. The text presents an overview of the models developed to explain the stability, dynamics and evolution of the stars, and great care is taken to detail the various stages in a star's life. The authors have succeeded in producing a unique text based on their own pioneering work in stellar modeling. Since its publication, this textbook has come to be considered a classic by both readers and teachers in astrophysics. This study edition is intended for students in astronomy and physics alike.
Along with classic papers byFowler, Hoyle, and the Burbidges,this work stands as a key foundationin the development of nuclear astrophysics. Long out ofprint and very hard to find, this remarkable work has beenedited and re-typeset by an atomic expert. Now availablein an affordable paperback edition for the very first time,it addresses interrelated questions — What are stars? Howdoes the sun shine? Why is gold so rare, and Where did theelements come from? — that have puzzled observers fromtime immemorial.Edited and re-typeset reprint of the original Atomic Energy ofCanada, Ltd., 1957 edition.
Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the graduate level and will further serve as a valuable reference work for professional astrophysicists.
How does the Star Trek universe stack up against the real universe? What warps when you're traveling at warp speed? What is the difference between a wormhole and a black hole? Are time loops really possible, and can I kill my grandmother before I am born? Anyone who has ever wondered "could this really happen?" will gain useful insights into the Star Trek universe (and, incidentally, the real world of physics) in this charming and accessible guide. Lawrence M. Krauss boldly goes where Star Trek has gone-and beyond. From Newton to Hawking, from Einstein to Feynman, from Kirk to Picard, Krauss leads readers on a voyage to the world of physics as we now know it and as it might one day be.
Using fundamental physics, the theory of stellar structure and evolution can predict how stars are born, how their complex internal structure changes, what nuclear fuel they burn, and their ultimate fate. This textbook is a stimulating introduction for undergraduates in astronomy, physics and applied mathematics, taking a course on the physics of stars. It uniquely emphasises the basic physical principles governing stellar structure and evolution. This second edition contains two new chapters on mass loss from stars and interacting binary stars, and new exercises. Clear and methodical, it explains the processes in simple terms, while maintaining mathematical rigour. Starting from general principles, this textbook leads students step-by-step to a global, comprehensive understanding of the subject. Fifty exercises and full solutions allow students to test their understanding. No prior knowledge of astronomy is required, and only a basic background in physics and mathematics is necessary.
"Stellar Physics" is a rather unique book in the growing literature on star formation and evolution. Not only does the author, a leading expert in the field, give a very thorough description of the current knowledge about stellar physics, but he handles with equal care the many problems that this field of research still faces. A bibliography with well over 650 entries makes this book an unparalleled source of references. "Stellar Evolution and Stability" is the second volume and can be read, as can the first volume, as a largely independent work. It traces in great detail the evolution of the protostar towards the main sequence and beyond this to the last stage of stellar evolution, with the corresponding vast range from white dwarfs to the mighty supernovae explosions and blackhole formation. The book concludes with special chapters on the dynamical, thermal and pulsing stability of stars.