Download Free Status Of The Us Dark Matter Axion Search Book in PDF and EPUB Free Download. You can read online Status Of The Us Dark Matter Axion Search and write the review.

This book contains written versions of the presentations made at the 4th International Workshop on the Identification of Dark Matter (IDM 2002), held in York, UK, in September 2002. The objective of this workshop series is to assess the status of work attempting to identify what constitutes dark matter — in particular, to consider the techniques being used, how successful they are, and what new techniques are likely to improve prospects for identifying likely dark matter candidates in the future. At IDM 2002 special emphasis was placed on recent results obtained in searches for baryonic and non-baryonic dark matter. The proceedings include reviews of major topics on dark matter, as well as short contributed talks.
The objective of the workshop series “The Identification of Dark Matter” is to assess critically the status of work attempting to identify what constitutes dark matter; in particular, to consider what techniques are currently being used, how successful they are, and what new techniques are likely to improve the prospects for identifying dark matter candidates in the future. This proceedings volume includes reviews on major particle astrophysics topics in the field of dark matter, as well as short contributed papers.
Dark matter in the Universe has become one of the most exciting and central fields of astrophysics, particle physics and cosmology. The lectures and talks in this book emphasize the experimental and theoretical status and perspectives of the ongoing search for dark matter, and the future potential of the field into the next millennium, stressing in particular the interplay between astro- and particle physics.
Axions are peculiar hypothetical particles that could both solve the CP problem of quantum chromodynamics and at the same time account for the dark matter of the universe. Based on a series of lectures by world experts in this field held at CERN (Geneva), this volume provides a pedagogical introduction to the theory, cosmology and astrophysics of these fascinating particles and gives an up-to-date account of the status and prospect of ongoing and planned experimental searches.
Advances made by physicists in understanding matter, space, and time and by astronomers in understanding the universe as a whole have closely intertwined the question being asked about the universe at its two extremesâ€"the very large and the very small. This report identifies 11 key questions that have a good chance to be answered in the next decade. It urges that a new research strategy be created that brings to bear the techniques of both astronomy and sub-atomic physics in a cross-disciplinary way to address these questions. The report presents seven recommendations to facilitate the necessary research and development coordination. These recommendations identify key priorities for future scientific projects critical for realizing these scientific opportunities.
There is general agreement among astrophysicists that most of the matter in the universe is dark, but a wide divergence of views about what this dark matter is. This volume addresses the problem of detecting and identifying dark matter candidates from axions to black holes. Although theoretical issues are considered, the focus of the book is on observational and experimental techniques, current results and future prospects.
Over the past century astronomers have discovered huge numbers of galaxies within our Universe by detecting the light from the stars they are made of. Now some astronomers believe that there are many other undetected galaxies that do not contain stars. IAU Symposium 244 saw heated debates surrounding the existence of these Dark Galaxies, discussing what a Dark Galaxy is and whether detections satisfy requirements for what one might be. Other contributions describe candidate Dark Galaxies, the baryon content of the Universe, and the discovery of the warm inter-galactic medium and low luminosity galaxies. Highlights include state-of-the-art observations of atomic hydrogen in the Universe that may be used to find Dark Galaxies, how gravitational lensing may be used to map the distribution of matter and inferences of dark structures, and the role of low luminosity galaxies in the formation of larger galaxies.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Searching for Dark Matter with Cosmic Gamma Rays summarizes the evidence for dark matter and what we can learn about its particle nature using cosmic gamma rays. It has almost been 100 years since Fritz Zwicky first detected hints that most of the matter in the Universe that doesn't directly emit or reflect light. Since then, the observational evidence for dark matter has continued to grow. Dark matter may be a new kind of particle that is governed by physics beyond our Standard Model of particle physics. In many models, dark matter annihilation or decay produces gamma rays. There are a variety of instruments observing the gamma-ray sky from tens of MeV to hundreds of TeV. Some make deep, focused observations of small regions, while others provide coverage of the entire sky. Each experiment offers complementary sensitivity to dark matter searches in a variety of target sizes, locations, and dark matter mass scales. We review results from recent gamma-ray experiments including anomalies some have attributed to dark matter. We also discuss how our gamma-ray observations complement other dark matter searches and the prospects for future experiments.
The scientific program of these important proceedings was arranged to cover most of the field of neutrino physics. In light of the rapid growth of interest stimulated by new interesting results from the field, more than half of the papers presented here are related to the neutrino mass and oscillations, including atmospheric and solar neutrino studies. Neutrino mass and oscillations could imply the existence of a mass scale many orders of magnitudes higher than presented in current physics and will probably guide scientists beyond the standard model of particle physics.