Download Free Statistics In The Social Sciences Book in PDF and EPUB Free Download. You can read online Statistics In The Social Sciences and write the review.

The second edition of Statistics for the Social Sciences prepares students from a wide range of disciplines to interpret and learn the statistical methods critical to their field of study. By using the General Linear Model (GLM), the author builds a foundation that enables students to see how statistical methods are interrelated enabling them to build on the basic skills. The author makes statistics relevant to students' varying majors by using fascinating real-life examples from the social sciences. Students who use this edition will benefit from clear explanations, warnings against common erroneous beliefs about statistics, and the latest developments in the philosophy, reporting, and practice of statistics in the social sciences. The textbook is packed with helpful pedagogical features including learning goals, guided practice, and reflection questions.
Do your students lack confidence in their ability to handle quantitative work? Do they get confused about how to enter statistical data on SAS, SPSS, and Excel programs? The new Third Edition of the bestselling Statistics for the Social Sciences is the solution to these dilemmas Popular in previous editions, this Third Edition continues to help build students' confidence and ability in doing statistical analysis by slowly moving from concepts that require little computational work to those that require more. Author R. Mark Sirkin once again demonstrates how statistics can be used so that students come to appreciate their usefulness rather than fearing them. Statistics for the Social Sciences emphasizes the analysis and interpretation of data to give students a feel for how data interpretation is related to the methods by which the information was obtained. The book includes lists of key concepts, chapter exercises, topic boxes, and more
A core statistics text that emphasizes logical inquiry, not math Basic Statistics for Social Research teaches core general statistical concepts and methods that all social science majors must master to understand (and do) social research. Its use of mathematics and theory are deliberately limited, as the authors focus on the use of concepts and tools of statistics in the analysis of social science data, rather than on the mathematical and computational aspects. Research questions and applications are taken from a wide variety of subfields in sociology, and each chapter is organized around one or more general ideas that are explained at its beginning and then applied in increasing detail in the body of the text. Each chapter contains instructive features to aid students in understanding and mastering the various statistical approaches presented in the book, including: Learning objectives Check quizzes after many sections and an answer key at the end of the chapter Summary Key terms End-of-chapter exercises SPSS exercises (in select chapters) Ancillary materials for both the student and the instructor are available and include a test bank for instructors and downloadable video tutorials for students.
Do your students lack confidence in handling quantitative work? Do they get confused about how to enter statistical data on SAS and SPSS programs? This Second Edition of Mark Sirkin's popular textbook is the solution for these dilemmas. The book progresses from concepts that require little computational work to the more demanding. It emphasizes utilization so that students appreciate the usefulness of statistics and shows how the interpretation of data is related to the methods by which data was obtained. The author includes coverage of the scientific method, levels of measurement and the interpretation of tables.
"Princeton University Press published Imai's textbook, Quantitative Social Science: An Introduction, an introduction to quantitative methods and data science for upper level undergrads and graduates in professional programs, in February 2017. What is distinct about the book is how it leads students through a series of applied examples of statistical methods, drawing on real examples from social science research. The original book was prepared with the statistical software R, which is freely available online and has gained in popularity in recent years. But many existing courses in statistics and data sciences, particularly in some subject areas like sociology and law, use STATA, another general purpose package that has been the market leader since the 1980s. We've had several requests for STATA versions of the text as many programs use it by default. This is a "translation" of the original text, keeping all the current pedagogical text but inserting the necessary code and outputs from STATA in their place"--
"Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--
In this fully updated edition of Using Basic Statistics in the Behavioral and Social Sciences, Annabel Ness Evans presents introductory statistics in a practical, conceptual, and humorous way, reducing the anxiety that many students experience in introductory courses. Avoiding complex notation and derivations, the book focuses on helping readers develop an understanding of the underlying logic of statistics, rather than rote memorization. Focus on Research boxes engage students with realistic applications of statistics, and end-of-chapter exercises ensure student comprehension. This exciting new edition includes a greater number of realistic and engaging global examples within the social and behavioral sciences, making it ideal for use within many departments or in interdisciplinary settings.
For graduate students in the social and health sciences, featuring essential concepts and equations most often needed in scholarly publications. Uses excerpts from the scholarly literature in these fields to introduce new concepts. Uses publicly-available data that are regularly used in social and health science publications to introduce Stata code and illustrate concepts and interpretation. Thoroughly integrates the teaching of statistical theory with teaching data processing and analysis. Offers guidance about planning projects and organizing code for reproducibility Shows how to recognize critiques of the constructions, terminology, and interpretations of statistics. New edition focuses on Stata, with code integrated into the chapters (rather than appendices, as in the first edition) includes Stata’s factor variables and margins commands and Long and Freese’s (2014) spost13 commands, to simplify programming and facilitate interpretation.
In addition to learning how to apply classic statistical methods, students need to understand when these methods perform well, and when and why they can be highly unsatisfactory. Modern Statistics for the Social and Behavioral Sciences illustrates how to use R to apply both standard and modern methods to correct known problems with classic techniques. Numerous illustrations provide a conceptual basis for understanding why practical problems with classic methods were missed for so many years, and why modern techniques have practical value. Designed for a two-semester, introductory course for graduate students in the social sciences, this text introduces three major advances in the field: Early studies seemed to suggest that normality can be assumed with relatively small sample sizes due to the central limit theorem. However, crucial issues were missed. Vastly improved methods are now available for dealing with non-normality. The impact of outliers and heavy-tailed distributions on power and our ability to obtain an accurate assessment of how groups differ and variables are related is a practical concern when using standard techniques, regardless of how large the sample size might be. Methods for dealing with this insight are described. The deleterious effects of heteroscedasticity on conventional ANOVA and regression methods are much more serious than once thought. Effective techniques for dealing heteroscedasticity are described and illustrated. Requiring no prior training in statistics, Modern Statistics for the Social and Behavioral Sciences provides a graduate-level introduction to basic, routinely used statistical techniques relevant to the social and behavioral sciences. It describes and illustrates methods developed during the last half century that deal with known problems associated with classic techniques. Espousing the view that no single method is always best, it imparts a general understanding of the relative merits of various techniques so that the choice of method can be made in an informed manner.
A comprehensive guide to the practical applications of statistics in social sciences This book brings out the relevance of statistical tools and methods in social sciences. Describing the various statistical techniques, it highlights their purpose and application along with a brief overview on how to interpret results and draw inferences. Topical and up-to-date, it examines: • different types of statistical variables and their treatment • tabulation and graphical presentation of data • theoretical distributions and common parametric and non-parametric tests, including analysis of variance and correlation ratio • linear regression including checking for violation of assumptions, transformations of variables and predictions • inequality measures such as Lorenz curve, Gini coefficient, dissimilarity index and human development index among others. It will be indispensable for students and scholars of statistics, econometrics, psychology and those interested in the application of statistics in social sciences.