Download Free Statistics In Spectroscopy Book in PDF and EPUB Free Download. You can read online Statistics In Spectroscopy and write the review.

This tutorial offers a basic hands-on approach to statistical analysis for chemists and spectroscopists. Without involving complicated mathematics, this book is designed to provide the reader with the basic principles underlying the use of common mathematical and statistical tools. Particular emphasis has been given to problem-solving applications and the proper use and interpretation of spectroscopic data. With exercises throughout, this book is also suitable for use as a textbook in analytical chemistry, instrumental analysis, and statistics in chemistry courses. - Serves as a primer for all chemists who need to know more about statistical analysis - Explains the effect of error on data and how to make the correct interpretation - Written in a readable style with minimal mathematics - Developed from the popular series of the same name first published in Spectroscropy magazine
Chemometrics in Spectroscopy, Second Edition, provides the reader with the methodology crucial to apply chemometrics to real world data. It allows scientists using spectroscopic instruments to find explanations and solutions to their problems when they are confronted with unexpected and unexplained results. Unlike other books on these topics, it explains the root causes of the phenomena that lead to these results. While books on NIR spectroscopy sometimes cover basic chemometrics, they do not mention many of the advanced topics this book discusses. In addition, traditional chemometrics books do not cover spectroscopy to the point of understanding the basis for the underlying phenomena. The second edition has been expanded with 50% more content covering advances in the field that have occurred in the last 10 years, including calibration transfer, units of measure in spectroscopy, principal components, clinical data reporting, classical least squares, regression models, spectral transfer, and more. - Written in the column format of the authors' online magazine - Presents topical and important chapters for those involved in analysis work, both research and routine - Focuses on practical issues in the implementation of chemometrics for NIR Spectroscopy - Includes a companion website with 350 additional color figures that illustrate CLS concepts
This book will appeal to both practitioners and researchers in industrial and university analytical laboratories, as well as students specializing in analytical spectroscopy and chemometrics. The subjects covered include the advanced principles of calibration (univariate and multivariate) and the estimation of the peak parameters in spectra with overlapping components. This book differs from existing studies on the subject in that it provides easily reproducible computer calculations illustrating its significant theoretical statements. As such, it can also serve as a practical guide to lecturers in analytical spectrometry and chemometrics.
Singular spectrum analysis (SSA) is a technique of time series analysis and forecasting combining elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. SSA seeks to decompose the original series into a sum of a small number of interpretable components such as trend, oscillatory components and noise. It is based on the singular value decomposition of a specific matrix constructed upon the time series. Neither a parametric model nor stationarity are assumed for the time series. This makes SSA a model-free method and hence enables SSA to have a very wide range of applicability. The present book is devoted to the methodology of SSA and shows how to use SSA both safely and with maximum effect. Potential readers of the book include: professional statisticians and econometricians, specialists in any discipline in which problems of time series analysis and forecasting occur, specialists in signal processing and those needed to extract signals from noisy data, and students taking courses on applied time series analysis.
This new edition of a successful, bestselling book continues to provide you with practical information on the use of statistical methods for solving real-world problems in complex industrial environments. Complete with examples from the chemical and pharmaceutical laboratory and manufacturing areas, this thoroughly updated book clearly demonstrates how to obtain reliable results by choosing the most appropriate experimental design and data evaluation methods. Unlike other books on the subject, Statistical Methods in Analytical Chemistry, Second Edition presents and solves problems in the context of a comprehensive decision-making process under GMP rules: Would you recommend the destruction of a $100,000 batch of product if one of four repeat determinations barely fails the specification limit? How would you prevent this from happening in the first place? Are you sure the calculator you are using is telling the truth? To help you control these situations, the new edition: * Covers univariate, bivariate, and multivariate data * Features case studies from the pharmaceutical and chemical industries demonstrating typical problems analysts encounter and the techniques used to solve them * Offers information on ancillary techniques, including a short introduction to optimization, exploratory data analysis, smoothing and computer simulation, and recapitulation of error propagation * Boasts numerous Excel files and compiled Visual Basic programs-no statistical table lookups required! * Uses Monte Carlo simulation to illustrate the variability inherent in statistically indistinguishable data sets Statistical Methods in Analytical Chemistry, Second Edition is an excellent, one-of-a-kind resource for laboratory scientists and engineers and project managers who need to assess data reliability; QC staff, regulators, and customers who want to frame realistic requirements and specifications; as well as educators looking for real-life experiments and advanced students in chemistry and pharmaceutical science. From the reviews of Statistical Methods in Analytical Chemistry, First Edition: "This book is extremely valuable. The authors supply many very useful programs along with their source code. Thus, the user can check the authenticity of the result and gain a greater understanding of the algorithm from the code. It should be on the bookshelf of every analytical chemist."-Applied Spectroscopy "The authors have compiled an interesting collection of data to illustrate the application of statistical methods . . . including calibrating, setting detection limits, analyzing ANOVA data, analyzing stability data, and determining the influence of error propagation."-Clinical Chemistry "The examples are taken from a chemical/pharmaceutical environment, but serve as convenient vehicles for the discussion of when to use which test, and how to make sense out of the results. While practical use of statistics is the major concern, it is put into perspective, and the reader is urged to use plausibility checks."-Journal of Chemical Education "The discussion of univariate statistical tests is one of the more thorough I have seen in this type of book . . . The treatment of linear regression is also thorough, and a complete set of equations for uncertainty in the results is presented . . . The bibliography is extensive and will serve as a valuable resource for those seeking more information on virtually any topic covered in the book."-Journal of American Chemical Society "This book treats the application of statistics to analytical chemistry in a very practical manner. [It] integrates PC computing power, testing programs, and analytical know-how in the context of good manufacturing practice/good laboratory practice (GMP/GLP) . . .The book is of value in many fields of analytical chemistry and should be available in all relevant libraries."-Chemometrics and Intelligent Laboratory Systems
Chemometrics in Analytical Spectroscopy provides students and practising analysts with a tutorial guide to the use and application of the more commonly encountered techniques used in processing and interpreting analytical spectroscopic data. In detail the book covers the basic elements of univariate and multivariate data analysis, the acquisition of digital data and signal enhancement by filtering and smoothing, feature selection and extraction, pattern recognition, exploratory data analysis by clustering, and common algorithms in use for multivariate calibration techniques. An appendix is included which serves as an introduction or refresher in matrix algebra. The extensive use of worked examples throughout gives Chemometrics in Analytical Spectroscopy special relevance in teaching and introducing chemometrics to undergraduates and post-graduates undertaking analytical science courses. It assumes only a very moderate level of mathematics, making the material far more accessible than other publications on chemometrics. The book is also ideal for analysts with little specialist background in statistics or mathematical methods, who wish to appreciate the wealth of material published in chemometrics.
This book a first comprehensive review on statistical spectroscopy deals with two related yet distinct topics a" averages and fluctuations. While fluctuations have been dealt with in considerable detail in Porter's book entitled Statistical Theories of Spectra: Fluctuations and subsequent reviews and books there does not exist at present a similar treatise on averages. This unique volume is designed to fill this significant gap.The book begins with an introductory review and overview of the subject of spectral distributions initiated by J Bruce French in the 60's followed by a collection of original papers which continue to give new insight on average properties of spectra. The purpose is to highlight the considerable advancements made in the application of statistical spectroscopy to nuclear structure and to encourage new directions in random matrix theory many-body chaos and statistical mechanics of finite quantum systems such as nuclei atoms molecules quantum dots etc.Along with Wong's book entitled Nuclear Statistical Spectroscopy this volume would be useful to a reader looking for a thorough introduction to the subject as well as to the specialist contemplating new applications. Finally with most of the material available in one place this book would be ideal in the design of graduate courses in statistical spectroscopy suited to specific needs.
Chemometrics in Spectroscopy, Revised Second Edition provides the reader with the methodology crucial to apply chemometrics to real world data. The book allows scientists using spectroscopic instruments to find explanations and solutions to their problems when they are confronted with unexpected and unexplained results. Unlike other books on these topics, it explains the root causes of the phenomena that lead to these results. While books on NIR spectroscopy sometimes cover basic chemometrics, they do not mention many of the advanced topics this book discusses. This revised second edition has been expanded with 50% more content on advances in the field that have occurred in the last 10 years, including calibration transfer, units of measure in spectroscopy, principal components, clinical data reporting, classical least squares, regression models, spectral transfer, and more. - Written in the column format of the authors' online magazine - Presents topical and important chapters for those involved in analysis work, both research and routine - Focuses on practical issues in the implementation of chemometrics for NIR Spectroscopy - Includes a companion website with 350 additional color figures that illustrate CLS concepts
This book summarizes studies and major materials on data compression methods in analytical spectroscopy, including some important topics on imaging. Its rigorous mathematical basis, in-depth detailed description, and numerous examples of the applications in chemistry and physics will be of value for theorists, practitioners, and students specializing in spectroscopy, chemometrics, and analytical chemistry.This text differs from existing brief reviews and articles on this topic in that it forms, for the first time, an overview of all kinds of compression methods in spectroscopy. In addition, it.