Download Free Statistics For Process Control Engineers Book in PDF and EPUB Free Download. You can read online Statistics For Process Control Engineers and write the review.

The first statistics guide focussing on practical application to process control design and maintenance Statistics for Process Control Engineers is the only guide to statistics written by and for process control professionals. It takes a wholly practical approach to the subject. Statistics are applied throughout the life of a process control scheme – from assessing its economic benefit, designing inferential properties, identifying dynamic models, monitoring performance and diagnosing faults. This book addresses all of these areas and more. The book begins with an overview of various statistical applications in the field of process control, followed by discussions of data characteristics, probability functions, data presentation, sample size, significance testing and commonly used mathematical functions. It then shows how to select and fit a distribution to data, before moving on to the application of regression analysis and data reconciliation. The book is extensively illustrated throughout with line drawings, tables and equations, and features numerous worked examples. In addition, two appendices include the data used in the examples and an exhaustive catalogue of statistical distributions. The data and a simple-to-use software tool are available for download. The reader can thus reproduce all of the examples and then extend the same statistical techniques to real problems. Takes a back-to-basics approach with a focus on techniques that have immediate, practical, problem-solving applications for practicing engineers, as well as engineering students Shows how to avoid the many common errors made by the industry in applying statistics to process control Describes not only the well-known statistical distributions but also demonstrates the advantages of applying the large number that are less well-known Inspires engineers to identify new applications of statistical techniques to the design and support of control schemes Provides a deeper understanding of services and products which control engineers are often tasked with assessing This book is a valuable professional resource for engineers working in the global process industry and engineering companies, as well as students of engineering. It will be of great interest to those in the oil and gas, chemical, pulp and paper, water purification, pharmaceuticals and power generation industries, as well as for design engineers, instrument engineers and process technical support.
The first statistics guide focussing on practical application to process control design and maintenance Statistics for Process Control Engineers is the only guide to statistics written by and for process control professionals. It takes a wholly practical approach to the subject. Statistics are applied throughout the life of a process control scheme – from assessing its economic benefit, designing inferential properties, identifying dynamic models, monitoring performance and diagnosing faults. This book addresses all of these areas and more. The book begins with an overview of various statistical applications in the field of process control, followed by discussions of data characteristics, probability functions, data presentation, sample size, significance testing and commonly used mathematical functions. It then shows how to select and fit a distribution to data, before moving on to the application of regression analysis and data reconciliation. The book is extensively illustrated throughout with line drawings, tables and equations, and features numerous worked examples. In addition, two appendices include the data used in the examples and an exhaustive catalogue of statistical distributions. The data and a simple-to-use software tool are available for download. The reader can thus reproduce all of the examples and then extend the same statistical techniques to real problems. Takes a back-to-basics approach with a focus on techniques that have immediate, practical, problem-solving applications for practicing engineers, as well as engineering students Shows how to avoid the many common errors made by the industry in applying statistics to process control Describes not only the well-known statistical distributions but also demonstrates the advantages of applying the large number that are less well-known Inspires engineers to identify new applications of statistical techniques to the design and support of control schemes Provides a deeper understanding of services and products which control engineers are often tasked with assessing This book is a valuable professional resource for engineers working in the global process industry and engineering companies, as well as students of engineering. It will be of great interest to those in the oil and gas, chemical, pulp and paper, water purification, pharmaceuticals and power generation industries, as well as for design engineers, instrument engineers and process technical support.
To practice engineering effectively, engineers must need to have a working knowledge of statistical concepts and methods. What they do not need is a background heavy on statistical theory and number crunching. Statistical Methods for Industrial Process Control provides the practical statistics foundation engineers can immediately apply to the work they do every day, regardless of their industry or specialty. The author illustrates statistical concepts and methods with authentic semiconductor manufacturing process examples-integrated circuit fabrication is an exceedingly rich medium for communicating statistical concepts. However, once learned, these concepts and methods can easily be extended and applied to a variety of other industries. The text emphasizes the application of statistical tools, rather than statistical theory. Modern advances in statistical software have made tedious computations and formula memorization unnecessary. Therefore, the author demonstrates software use throughout the book and supplies MINITAB examples and SAS programs. Review problems at the end of each chapter challenge and deepen readers' understanding of the material. Statistical Methods for Industrial Process Control addresses topics that support the work engineers do, rather than educate them as statisticians, and these topics also reflect modern usage. It effectively introduces novice engineers to a fascinating industry and enables experienced engineers to build upon their existing knowledge and learn new skills.
A major tool for quality control and management, statistical process control (SPC) monitors sequential processes, such as production lines and Internet traffic, to ensure that they work stably and satisfactorily. Along with covering traditional methods, Introduction to Statistical Process Control describes many recent SPC methods that improve upon
This expanded new edition is specifically designed to meet the needs of the process industry, and closes the gap between theory and practice. Back-to-basics approach, with a focus on techniques that have an immediate practical application, and heavy maths relegated to the end of the book Written by an experienced practitioner, highly regarded by major corporations, with 25 years of teaching industry courses Supports the increasing expectations for Universities to teach more practical process control (supported by IChemE)
The tools and technique used in Statistical Process Control have been used around the world to monitor and measure process variation and allow real positive changes to be made. The majority of engineers and scientists have had some exposure to this important technique but in many cases this has been badly taught and they fail to see the usefulness of it properly applied. This book has been written with the authors 30 years experience in practical Statistical Process Control and is aimed squarely at practising engineers and scientists rather than statisticians and mathematicians. Practical Statistical Process Control takes a graphical approach using a software tool called Minitab. The author concentrates on each step of using the technique with explanations along the way of each decision point. Readers will find this guide both practical and useful, with copious screenshots of the software in use and clear precise explanations. The emphasis is on understanding the technique and being able to use it in real world applications. Key points: * Provides tools and techniques for practical business and process improvement. * Introduces screenshots and explanations for each step of SPC including the importance of assessing the measurement system and constructing control charts. * A worked example, using Minitab sample data with clear explanations of the variables and analyses. This book will be extremely useful to engineers and scientists who want to solve quality, process and manufacturing problems quickly and easily.
The focus of this book is to understand and apply the different SPC tools in a company regulated by the Food and Drug Administration (FDA): those that manufacture pharmaceutical products, biologics, medical devices, food, cosmetics, and so on. The book is not intended to provide an intensive course in statistics; instead, it is intended to provide a how-to guide about the application of the diverse array of statistical tools available to analyze and improve the processes in an organization regulated by FDA. This book is aimed at engineers, scientists, analysts, technicians, managers, supervisors, and all other professionals responsible to measure and improve the quality of their processes. Although the examples and case studies presented throughout the book are based on situations found in an organization regulated by FDA, the book can also be used to understand the application of those tools in any type of industry. Readers will obtain a better understanding of some of the statistical tools available to control their processes and be encouraged to study, with a greater level of detail, each of the statistical tools presented throughout the book. The content of this book is the result of the author’s almost 20 years of experience in the application of statistics in various industries, and his combined educational background of engineering and law that he has used to provide consulting services to dozens of FDA-regulated organizations.
The business, commercial and public-sector world has changed dramatically since John Oakland wrote the first edition of Statistical Process Control – a practical guide in the mid-eighties. Then people were rediscovering statistical methods of ‘quality control’ and the book responded to an often desperate need to find out about the techniques and use them on data. Pressure over time from organizations supplying directly to the consumer, typically in the automotive and high technology sectors, forced those in charge of the supplying production and service operations to think more about preventing problems than how to find and fix them. Subsequent editions retained the ‘took kit’ approach of the first but included some of the ‘philosophy’ behind the techniques and their use. The theme which runs throughout the 7th edition is still processes - that require understanding, have variation, must be properly controlled, have a capability, and need improvement - the five sections of this new edition. SPC never has been and never will be simply a ‘took kit’ and in this book the authors provide, not only the instructional guide for the tools, but communicate the management practices which have become so vital to success in organizations throughout the world. The book is supported by the authors' extensive and latest consulting work within thousands of organisations worldwide. Fully updated to include real-life case studies, new research based on client work from an array of industries, and integration with the latest computer methods and Minitab software, the book also retains its valued textbook quality through clear learning objectives and end of chapter discussion questions. It can still serve as a textbook for both student and practicing engineers, scientists, technologists, managers and for anyone wishing to understand or implement modern statistical process control techniques.
Outliers play an important, though underestimated, role in control engineering. Traditionally they are unseen and neglected. In opposition, industrial practice gives frequent examples of their existence and their mostly negative impacts on the control quality. The origin of outliers is never fully known. Some of them are generated externally to the process (exogenous), like for instance erroneous observations, data corrupted by control systems or the effect of human intervention. Such outliers appear occasionally with some unknow probability shifting real value often to some strange and nonsense value. They are frequently called deviants, anomalies or contaminants. In most cases we are interested in their detection and removal. However, there exists the second kind of outliers. Quite often strange looking data observations are not artificial data occurrences. They may be just representatives of the underlying generation mechanism being inseparable internal part of the process (endogenous outliers). In such a case they are not wrong and should be treated with cautiousness, as they may include important information about the dynamic nature of the process. As such they cannot be neglected nor simply removed. The Outlier should be detected, labelled and suitably treated. These activities cannot be performed without proper analytical tools and modeling approaches. There are dozens of methods proposed by scientists, starting from Gaussian-based statistical scoring up to data mining artificial intelligence tools. The research presented in this book presents novel approach incorporating non-Gaussian statistical tools and fractional calculus approach revealing new data analytics applied to this important and challenging task. The proposed book includes a collection of contributions addressing different yet cohesive subjects, like dynamic modelling, classical control, advanced control, fractional calculus, statistical analytics focused on an ultimate goal: robust and outlier-proof analysis. All studied problems show that outliers play an important role and classical methods, in which outlier are not taken into account, do not give good results. Applications from different engineering areas are considered such as semiconductor process control and monitoring, MIMO peltier temperature control and health monitoring, networked control systems, and etc.