Download Free Statistical Tests Of Nonparametric Hypotheses Asymptotic Theory Book in PDF and EPUB Free Download. You can read online Statistical Tests Of Nonparametric Hypotheses Asymptotic Theory and write the review.

An overview of the asymptotic theory of optimal nonparametric tests is presented in this book. It covers a wide range of topics: Neyman-Pearson and LeCam's theories of optimal tests, the theories of empirical processes and kernel estimators with extensions of their applications to the asymptotic behavior of tests for distribution functions, densities and curves of the nonparametric models defining the distributions of point processes and diffusions. With many new test statistics developed for smooth curves, the reliance on kernel estimators with bias corrections and the weak convergence of the estimators are useful to prove the asymptotic properties of the tests, extending the coverage to semiparametric models. They include tests built from continuously observed processes and observations with cumulative intervals.
“...a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory. It also deserves a place in libraries of all institutions where introductory statistics courses are taught." –CHOICE This Second Edition presents a practical and understandable approach that enhances and expands the statistical toolset for readers. This book includes: New coverage of the sign test and the Kolmogorov-Smirnov two-sample test in an effort to offer a logical and natural progression to statistical power SPSS® (Version 21) software and updated screen captures to demonstrate how to perform and recognize the steps in the various procedures Data sets and odd-numbered solutions provided in an appendix, and tables of critical values Supplementary material to aid in reader comprehension, which includes: narrated videos and screen animations with step-by-step instructions on how to follow the tests using SPSS; online decision trees to help users determine the needed type of statistical test; and additional solutions not found within the book.
A practical and understandable approach to nonparametric statistics for researchers across diverse areas of study As the importance of nonparametric methods in modern statistics continues to grow, these techniques are being increasingly applied to experimental designs across various fields of study. However, researchers are not always properly equipped with the knowledge to correctly apply these methods. Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach fills a void in the current literature by addressing nonparametric statistics in a manner that is easily accessible for readers with a background in the social, behavioral, biological, and physical sciences. Each chapter follows the same comprehensive format, beginning with a general introduction to the particular topic and a list of main learning objectives. A nonparametric procedure is then presented and accompanied by context-based examples that are outlined in a step-by-step fashion. Next, SPSS® screen captures are used to demonstrate how to perform and recognize the steps in the various procedures. Finally, the authors identify and briefly describe actual examples of corresponding nonparametric tests from diverse fields. Using this organized structure, the book outlines essential skills for the application of nonparametric statistical methods, including how to: Test data for normality and randomness Use the Wilcoxon signed rank test to compare two related samples Apply the Mann-Whitney U test to compare two unrelated samples Compare more than two related samples using the Friedman test Employ the Kruskal-Wallis H test to compare more than two unrelated samples Compare variables of ordinal or dichotomous scales Test for nominal scale data A detailed appendix provides guidance on inputting and analyzing the presented data using SPSS®, and supplemental tables of critical values are provided. In addition, the book's FTP site houses supplemental data sets and solutions for further practice. Extensively classroom tested, Nonparametric Statistics for Non-Statisticians is an ideal book for courses on nonparametric statistics at the upper-undergraduate and graduate levels. It is also an excellent reference for professionals and researchers in the social, behavioral, and health sciences who seek a review of nonparametric methods and relevant applications.
This book combines theoretical underpinnings of statistics with practical analysis of Earth sciences data using MATLAB. Supplementary resources are available online.
This book demonstrates that nonparametric statistics can be taught from a parametric point of view. As a result, one can exploit various parametric tools such as the use of the likelihood function, penalized likelihood and score functions to not only derive well-known tests but to also go beyond and make use of Bayesian methods to analyze ranking data. The book bridges the gap between parametric and nonparametric statistics and presents the best practices of the former while enjoying the robustness properties of the latter. This book can be used in a graduate course in nonparametrics, with parts being accessible to senior undergraduates. In addition, the book will be of wide interest to statisticians and researchers in applied fields.
This book presents the modern theory of nonparametric goodness-of-fit testing. It fills the gap in modern nonparametric statistical theory by discussing hypothesis testing and addresses mathematical statisticians who are interesting in the theory of non-parametric statistical inference. It will be of interest to specialists who are dealing with applied non-parametric statistical problems relevant in signal detection and transmission and in technical and medical diagnostics among others.
In an era marked by exponential growth in data generation and an unprecedented convergence of technology and healthcare, the intersection of biostatistics and data science has become a pivotal domain. This book is the ideal companion in navigating the convergence of statistical methodologies and data science techniques with diverse applications implemented in the open-source environment of R. It is designed to be a comprehensive guide, marrying the principles of biostatistics with the practical implementation of statistics and data science in R, thereby empowering learners, researchers, and practitioners with the tools necessary to extract meaningful knowledge from biological, health, and medical datasets. This book is intended for students, researchers, and professionals eager to harness the combined power of biostatistics, data science, and the R programming language while gathering vital statistical knowledge needed for cutting-edge scientists in all fields. It is useful for those seeking to understand the basics of data science and statistical analysis, or looking to enhance their skills in handling any simple or complex data including biological, health, medical, and industry data. Key Features: Presents contemporary concepts of data science and biostatistics with real-life data analysis examples Promotes the evolution of fundamental and advanced methods applying to real-life problem-solving cases Explores computational statistical data science techniques from initial conception to recent developments of biostatistics Provides all R codes and real-world datasets to practice and competently apply into reader’s own domains Written in an exclusive state-of-the-art deductive approach without any theoretical hitches to support all contemporary readers
'This is a solid mathematical treatment of some topics in the analysis of change-point models. The book is intended for graduate students and scientific researchers using statistics in practice.'zbMATHThis book provides a detailed exposition of the specific properties of methods of estimation and test in a wide range of models with changes. They include parametric and nonparametric models for samples, series, point processes and diffusion processes, with changes at the threshold of variables or at a time or an index of sampling.The book contains many new results and fills a gap in statistics literature, where the asymptotic properties of the estimators and test statistics in singular models are not sufficiently developed. It is suitable for graduate students and scientific researchers working in the industry, governmental laboratories and academia.