Download Free Statistical Profiles Book in PDF and EPUB Free Download. You can read online Statistical Profiles and write the review.

Introductory Statistics 2e provides an engaging, practical, and thorough overview of the core concepts and skills taught in most one-semester statistics courses. The text focuses on diverse applications from a variety of fields and societal contexts, including business, healthcare, sciences, sociology, political science, computing, and several others. The material supports students with conceptual narratives, detailed step-by-step examples, and a wealth of illustrations, as well as collaborative exercises, technology integration problems, and statistics labs. The text assumes some knowledge of intermediate algebra, and includes thousands of problems and exercises that offer instructors and students ample opportunity to explore and reinforce useful statistical skills. This is an adaptation of Introductory Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.
Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Focusing on quantative approaches to investigating problems, this title introduces the basics rules and principles of statistics, encouraging the reader to think critically about data analysis and research design, and how these factors can impact upon evidence-based practice.
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Statistics and Probability in Forensic Anthropology provides a practical guide for forensic scientists, primarily anthropologists and pathologists, on how to design studies, how to choose and apply statistical approaches, and how to interpret statistical outcomes in the forensic practice. As with other forensic, medical and biological disciplines, statistics have become increasingly important in forensic anthropology and legal medicine, but there is not a single book, which specifically addresses the needs of forensic anthropologists in relation to the research undertaken in the field and the interpretation of research outcomes and case findings within the setting of legal proceedings. The book includes the application of both frequentist and Bayesian statistics in relation to topics relevant for the research and the interpretation of findings in forensic anthropology, as well as general chapters on study design and statistical approaches addressing measurement errors and reliability. Scientific terminology understandable to students and advanced practitioners of forensic anthropology, pathology and related disciplines is used throughout. Additionally, Statistics and Probability in Forensic Anthropology facilitates sufficient understanding of the statistical procedures and data interpretation based on statistical outcomes and models, which helps the reader confidently present their work within the forensic context, either in the form of case reports for legal purposes or as research publications for the scientific community. - Contains the application of both frequentist and Bayesian statistics in relation to topics relevant for forensic anthropology research and the interpretation of findings - Provides examples of study designs and their statistical solutions, partly following the layout of scientific manuscripts on common topics in the field - Includes scientific terminology understandable to students and advanced practitioners of forensic anthropology, legal medicine and related disciplines
A one-of-a-kind presentation of the major achievements in statistical profile monitoring methods Statistical profile monitoring is an area of statistical quality control that is growing in significance for researchers and practitioners, specifically because of its range of applicability across various service and manufacturing settings. Comprised of contributions from renowned academicians and practitioners in the field, Statistical Analysis of Profile Monitoring presents the latest state-of-the-art research on the use of control charts to monitor process and product quality profiles. The book presents comprehensive coverage of profile monitoring definitions, techniques, models, and application examples, particularly in various areas of engineering and statistics. The book begins with an introduction to the concept of profile monitoring and its applications in practice. Subsequent chapters explore the fundamental concepts, methods, and issues related to statistical profile monitoring, with topics of coverage including: Simple and multiple linear profiles Binary response profiles Parametric and nonparametric nonlinear profiles Multivariate linear profiles monitoring Statistical process control for geometric specifications Correlation and autocorrelation in profiles Nonparametric profile monitoring Throughout the book, more than two dozen real-world case studies highlight the discussed topics along with innovative examples and applications of profile monitoring. Statistical Analysis of Profile Monitoring is an excellent book for courses on statistical quality control at the graduate level. It also serves as a valuable reference for quality engineers, researchers and anyone who works in monitoring and improving statistical processes.