Download Free Statistical Occurrence Of Soil Strength Book in PDF and EPUB Free Download. You can read online Statistical Occurrence Of Soil Strength and write the review.

This report provides a tutorial introduction to practical techniques of statistical data analysis for geotechnical engineering--the intended audience is the practicing geotechnical engineer with little or no background in statistics. The approach summarizes soil parameters by two numbers: a best estimate and a measure of uncertainty. Uncertainties in soil parameter estimates of four types are considered--(a) variability in the soil deposit; (b) random measurement error; (c) measurement bias; and (d) limited numbers of tests. The first two cause data scatter. The second two cause systematic error. A procedure is developed to assess each source individually and then to combine them into a statistical soil profile. The statistical profile shows the best estimate of soil properties with depth and uncertainty envelopes about that profile. The statistical design profile is the first step in error analysis, as described in the accompanying report. AD-A186795. Keywords: Embankment dams; Risk assessment.
This book presents a one-stop reference to the empirical correlations used extensively in geotechnical engineering. Empirical correlations play a key role in geotechnical engineering designs and analysis. Laboratory and in situ testing of soils can add significant cost to a civil engineering project. By using appropriate empirical correlations, it is possible to derive many design parameters, thus limiting our reliance on these soil tests. The authors have decades of experience in geotechnical engineering, as professional engineers or researchers. The objective of this book is to present a critical evaluation of a wide range of empirical correlations reported in the literature, along with typical values of soil parameters, in the light of their experience and knowledge. This book will be a one-stop-shop for the practising professionals, geotechnical researchers and academics looking for specific correlations for estimating certain geotechnical parameters. The empirical correlations in the forms of equations and charts and typical values are collated from extensive literature review, and from the authors' database.
Soil is fundamentally a multi-phase material – consisting of solid particles, water and air. In soil mechanics and geotechnical engineering it is widely treated as an elastic, elastoplastic or visco-elastoplastic material, and consequently regarded as a continuum body. However, this book explores an alternative approach, considering soil as a multi-phase and discrete material and applying basic Newtonian mechanics rather than analytical mechanics. It applies microscopic models to the solid phase and fluid phases, and then introduces probability theory and statistics to derive average physical quantities which correspond to the soil‘s macroscopic physical properties such as void ratio and water content. This book is particularly focused on the mechanical behaviour of dry, partially saturated and full saturated sandy soil, as much of the physicochemical microscopic characteristic of clayey soil is still not clear. It explores the inter-particle forces at the point of contact of soil particles and the resultant inter-particle stresses, instead of the total stress and effective stress which are studied in mainstream soil mechanics. Deformation and strength behaviour, soil-water characteristic curves, and permeability coefficients of water and air are then derived simply from grain size distribution, soil particle density, void ratio and water content. A useful reference for consultants, professional engineers, researchers and public sector organisations involved in unsaturated soil tests. Advanced undergraduate and postgraduate students on Unsaturated Soil Mechanics courses will also find it a valuable text to study.
Risk and reliability analysis is an area of growing importance in geotechnical engineering, where many variables have to be considered. Statistics, reliability modeling and engineering judgement are employed together to develop risk and decision analyses for civil engineering systems. The resulting engineering models are used to make probabilistic predictions, which are applied to geotechnical problems. Reliability & Statistics in Geotechnical Engineering comprehensively covers the subject of risk and reliability in both practical and research terms * Includes extensive use of case studies * Presents topics not covered elsewhere--spatial variability and stochastic properties of geological materials * No comparable texts available Practicing engineers will find this an essential resource as will graduates in geotechnical engineering programmes.