Download Free Statistical Methods Of Geophysical Data Processing Book in PDF and EPUB Free Download. You can read online Statistical Methods Of Geophysical Data Processing and write the review.

This textbook contains a consideration of the wide field of problems connected with statistical methods of processing of observed data, with the main examples and considered models related to geophysics and seismic exploration. This textbook will be particularly helpful to students and professionals from various fields of physics, connected with an estimation of the parameters of the physical objects by experimental data. The reader can also find many important topics, which are the basis for statistical methods of estimation and inverse problem solutions.
Geophysical Data Analysis: Discrete Inverse Theory is an introductory text focusing on discrete inverse theory that is concerned with parameters that either are truly discrete or can be adequately approximated as discrete. Organized into 12 chapters, the book’s opening chapters provide a general background of inverse problems and their corresponding solution, as well as some of the basic concepts from probability theory that are applied throughout the text. Chapters 3-7 discuss the solution of the canonical inverse problem, that is, the linear problem with Gaussian statistics, and discussions on problems that are non-Gaussian and nonlinear are covered in Chapters 8 and 9. Chapters 10-12 present examples of the use of inverse theory and a discussion on the numerical algorithms that must be employed to solve inverse problems on a computer. This book is of value to graduate students and many college seniors in the applied sciences.
This thoroughly revised edition presents important methods in the quantitative analysis of geologic data. Retains the basic arrangement of the previous edition but expands sections on probability, nonparametric statistics, and Fourier analysis. Contains revised coverage of eigenvalues and eigenvectors, and new coverage of data analysis methods, such as the semivariogram and the process of kriging.
A concise introduction to geophysical data processing - many of the techniques associated with the general field of time series analysis - for advanced students, researchers, and professionals. The textbook begins with calculus before transitioning to discrete time series via the sampling theorem, aliasing, use of complex sinusoids, development of the discrete Fourier transform from the Fourier series, and an overview of linear digital filter types and descriptions. Aimed at senior undergraduate and graduate students in geophysics, environmental science, and engineering with no previous background in linear algebra, probability, or statistics, this textbook draws scenarios and datasets from across the world of geophysics, and shows how data processing techniques can be applied to real-world problems using detailed examples, illustrations, and exercises (using MATLAB or similar computing environment). Online supplementary resources include datasets for students, and a solutions manual and all the figures from the book as PowerPoints for course instructors.
This is a detailed introduction to the statistical analysis of geophysical time series, using numerous examples and exercises to build proficiency. The exercises lead the reader to explore the meaning of concepts such as the estimation of the linear time series (AMRA) models or spectra. The book also serves as a guide to using the open-source "R" program for statistical analysis of time series.
Statistical Methods in the Atmospheric Sciences, Third Edition, explains the latest statistical methods used to describe, analyze, test, and forecast atmospheric data. This revised and expanded text is intended to help students understand and communicate what their data sets have to say, or to make sense of the scientific literature in meteorology, climatology, and related disciplines. In this new edition, what was a single chapter on multivariate statistics has been expanded to a full six chapters on this important topic. Other chapters have also been revised and cover exploratory data analysis, probability distributions, hypothesis testing, statistical weather forecasting, forecast verification, and time series analysis. There is now an expanded treatment of resampling tests and key analysis techniques, an updated discussion on ensemble forecasting, and a detailed chapter on forecast verification. In addition, the book includes new sections on maximum likelihood and on statistical simulation and contains current references to original research. Students will benefit from pedagogical features including worked examples, end-of-chapter exercises with separate solutions, and numerous illustrations and equations. This book will be of interest to researchers and students in the atmospheric sciences, including meteorology, climatology, and other geophysical disciplines. Accessible presentation and explanation of techniques for atmospheric data summarization, analysis, testing and forecasting Many worked examples End-of-chapter exercises, with answers provided
This is the first comprehensive, yet clearly presented, account of statistical methods for analysing spherical data. The analysis of data, in the form of directions in space or of positions of points on a spherical surface, is required in many contexts in the earth sciences, astrophysics and other fields, yet the methodology required is disseminated throughout the literature. Statistical Analysis of Spherical Data aims to present a unified and up-to-date account of these methods for practical use. The emphasis is on applications rather than theory, with the statistical methods being illustrated throughout the book by data examples.
This book introduces and explains the statistical methods used to describe, analyze, test, and forecast atmospheric data. It will be useful to students, scientists, and other professionals who seek to make sense of the scientific literature in meteorology, climatology, or other geophysical disciplines, or to understand and communicate what their atmospheric data sets have to say. The book includes chapters on exploratory data analysis, probability distributions, hypothesis testing, statistical weather forecasting, forecast verification, time(series analysis, and multivariate data analysis. Worked examples, exercises, and illustrations facilitate understanding of the material; an extensive and up-to-date list of references allows the reader to pursue selected topics in greater depth.
Since Karl Pearson wrote his paper on spurious correlation in 1897, a lot has been said about the statistical analysis of compositional data, mainly by geologists such as Felix Chayes. The solution appeared in the 1980s, when John Aitchison proposed to use Iogratios. Since then, the approach has seen a great expansion, mainly building on the idea of the `natural geometry' of the sample space. Statistics is expected to give sense to our perception of the natural scale of the data, and this is made possible for compositional data using Iogratios. This publication will be a milestone in this process.