Download Free Statistical Methods In The Atmospheric Sciences Book in PDF and EPUB Free Download. You can read online Statistical Methods In The Atmospheric Sciences and write the review.

Praise for the First Edition:""I recommend this book, without hesitation, as either a reference or course text...Wilks' excellent book provides a thorough base in applied statistical methods for atmospheric sciences.""--BAMS (Bulletin of the American Meteorological Society)Fundamentally, statistics is concerned with managing data and making inferences and forecasts in the face of uncertainty. It should not be surprising, therefore, that statistical methods have a key role to play in the atmospheric sciences. It is the uncertainty in atmospheric behavior that continues to move res.
Statistical Methods in the Atmospheric Sciences, Third Edition, explains the latest statistical methods used to describe, analyze, test, and forecast atmospheric data. This revised and expanded text is intended to help students understand and communicate what their data sets have to say, or to make sense of the scientific literature in meteorology, climatology, and related disciplines. In this new edition, what was a single chapter on multivariate statistics has been expanded to a full six chapters on this important topic. Other chapters have also been revised and cover exploratory data analysis, probability distributions, hypothesis testing, statistical weather forecasting, forecast verification, and time series analysis. There is now an expanded treatment of resampling tests and key analysis techniques, an updated discussion on ensemble forecasting, and a detailed chapter on forecast verification. In addition, the book includes new sections on maximum likelihood and on statistical simulation and contains current references to original research. Students will benefit from pedagogical features including worked examples, end-of-chapter exercises with separate solutions, and numerous illustrations and equations. This book will be of interest to researchers and students in the atmospheric sciences, including meteorology, climatology, and other geophysical disciplines. - Accessible presentation and explanation of techniques for atmospheric data summarization, analysis, testing and forecasting - Many worked examples - End-of-chapter exercises, with answers provided
This revised and expanded text explains the latest statistical methods that are being used to describe, analyze, test, and forecast atmospheric data. It features numerous worked examples, illustrations, equations, and exercises with separate solutions. The book will help advanced students and professionals understand and communicate what their data sets have to say, and make sense of the scientific literature in meteorology, climatology, and related disciplines.
An accessible introduction to statistical methods for students in the climate sciences.
Climatology is, to a large degree, the study of the statistics of our climate. The powerful tools of mathematical statistics therefore find wide application in climatological research. The purpose of this book is to help the climatologist understand the basic precepts of the statistician's art and to provide some of the background needed to apply statistical methodology correctly and usefully. The book is self contained: introductory material, standard advanced techniques, and the specialised techniques used specifically by climatologists are all contained within this one source. There are a wealth of real-world examples drawn from the climate literature to demonstrate the need, power and pitfalls of statistical analysis in climate research. Suitable for graduate courses on statistics for climatic, atmospheric and oceanic science, this book will also be valuable as a reference source for researchers in climatology, meteorology, atmospheric science, and oceanography.
The risks posed by climate change and its effect on climate extremes are an increasingly pressing societal problem. This book provides an accessible overview of the statistical analysis methods which can be used to investigate climate extremes and analyse potential risk. The statistical analysis methods are illustrated with case studies on extremes in the three major climate variables: temperature, precipitation, and wind speed. The book also provides datasets and access to appropriate analysis software, allowing the reader to replicate the case study calculations. Providing the necessary tools to analyse climate risk, this book is invaluable for students and researchers working in the climate sciences, as well as risk analysts interested in climate extremes.
Methodology drawn from the fields of probability. statistics and decision making plays an increasingly important role in the atmosphericsciences. both in basic and applied research and in experimental and operational studies. Applications of such methodology can be found in almost every facet of the discipline. from the most theoretical and global (e.g., atmospheric predictability. global climate modeling) to the most practical and local (e.g., crop-weather modeling forecast evaluation). Almost every issue of the multitude of journals published by the atmospheric sciences community now contain some or more papers involving applications of concepts and/or methodology from the fields of probability and statistics. Despite the increasingly pervasive nature of such applications. very few book length treatments of probabilistic and statistical topics of particular interest to atmospheric scientists have appeared (especially inEnglish) since the publication of the pioneering works of Brooks andCarruthers (Handbook of Statistical Methods in Meteorology) in 1953 and Panofsky and Brier-(some Applications of)statistics to Meteor) in 1958. As a result. many relatively recent developments in probability and statistics are not well known to atmospheric scientists and recent work in active areas of meteorological research involving significant applications of probabilistic and statistical methods are not familiar to the meteorological community as a whole.
This volume of Methods of Experimental Physics provides an extensive introduction to probability and statistics in many areas of the physical sciences, with an emphasis on the emerging area of spatial statistics. The scope of topics covered is wide-ranging-the text discusses a variety of the most commonly used classical methods and addresses newer methods that are applicable or potentially important. The chapter authors motivate readers with their insightful discussions. - Examines basic probability, including coverage of standard distributions, time series models, and Monte Carlo methods - Describes statistical methods, including basic inference, goodness of fit, maximum likelihood, and least squares - Addresses time series analysis, including filtering and spectral analysis - Includes simulations of physical experiments - Features applications of statistics to atmospheric physics and radio astronomy - Covers the increasingly important area of modern statistical computing
This book discusses a broad range of statistical design and analysis methods that are particularly well suited to pollution data. It explains key statistical techniques in easy-to-comprehend terms and uses practical examples, exercises, and case studies to illustrate procedures. Dr. Gilbert begins by discussing a space-time framework for sampling pollutants. He then shows how to use statistical sample survey methods to estimate average and total amounts of pollutants in the environment, and how to determine the number of field samples and measurements to collect for this purpose. Then a broad range of statistical analysis methods are described and illustrated. These include: * determining the number of samples needed to find hot spots * analyzing pollution data that are lognormally distributed * testing for trends over time or space * estimating the magnitude of trends * comparing pollution data from two or more populations New areas discussed in this sourcebook include statistical techniques for data that are correlated, reported as less than the measurement detection limit, or obtained from field-composited samples. Nonparametric statistical analysis methods are emphasized since parametric procedures are often not appropriate for pollution data. This book also provides an illustrated comprehensive computer code for nonparametric trend detection and estimation analyses as well as nineteen statistical tables to permit easy application of the discussed statistical techniques. In addition, many publications are cited that deal with the design of pollution studies and the statistical analysis of pollution data. This sourcebook will be a useful tool for applied statisticians, ecologists, radioecologists, hydrologists, biologists, environmental engineers, and other professionals who deal with the collection, analysis, and interpretation of pollution in air, water, and soil.