Download Free Statistical Methods For Modelling Sources Of Heterogeneity In Genetic Epidemiology Book in PDF and EPUB Free Download. You can read online Statistical Methods For Modelling Sources Of Heterogeneity In Genetic Epidemiology and write the review.

This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)
Major text including chapters on the following: defining outcome measures; assessing heterogeneity; using fixed effects methods and random effects models for combining study estimates; publication bias.
Human Genetics concerns the study of genetic forces in man. By studying our genetic make-up we are able to understand more about our heritage and evolution. Some of the original, and most significant research in genetics centred around the study of the genetics of complex diseases - genetic epidemiology. This is the third in a highly successful series of books based on articles from the Encyclopedia of Biostatistics. This volume will be a timely and comprehensive reference, for a subject that has seen a recent explosion of interest following the completion of the first draft of the Human Genome Mapping Project. The editors have updated the articles from the Human Genetics section of the EoB, have adpated other articles to give them a genetic feel, and have included a number of newly commissioned articles to ensure the work is comprehensive and provides a self-contained reference.
This balanced and well-integrated text gives a lucid overview of the entire process of genetic epidemiology, from familial aggregation through segregation, likage, and association studies. It is illustrated throughout with examples from the literature on cancer genetics. Statistical concepts are developed in depth, but with a focus on applications. Introductory chapters on molecular biology, Mendelian genetics, epidemiology, statistics, and population genetics are included. Oriented to graduate students in biostatistics, epidemiology, and human genetics, the book will also be a useful reference for researchers. It gives equal emphasis to study designs and data analysis.
Genetic Data Analysis II details the statistical methodology needed to draw inferences from discrete genetic data. An emphasis is given to permutation tests, and developments in phylogenetic tree construction are reviewed.
The Agency for Healthcare Research and Quality (AHRQ) commissioned the RTI International–University of North Carolina at Chapel Hill (RTI-UNC) Evidence-based Practice Center (EPC) to explore how systematic review groups have dealt with clinical heterogeneity and to seek out best practices for addressing clinical heterogeneity in systematic reviews (SRs) and comparative effectiveness reviews (CERs). Such best practices, to the extent they exist, may enable AHRQ's EPCs to address critiques from patients, clinicians, policymakers, and other proponents of health care about the extent to which “average” estimates of the benefits and harms of health care interventions apply to individual patients or to small groups of patients sharing similar characteristics. Such users of reviews often assert that EPC reviews typically focus on broad populations and, as a result, often lack information relevant to patient subgroups that are of particular concern to them. More important, even when EPCs evaluate literature on homogeneous groups, there may be varying individual treatment for no apparent reason, indicating that average treatment effect does not point to the best treatment for any given individual. Thus, the health care community is looking for better ways to develop information that may foster better medical care at a “personal” or “individual” level. To address our charge for this methods project, the EPC set out to answer six key questions (KQ). Key questions for methods report on clinical heterogeneity include: 1. What is clinical heterogeneity? a. How has it been defined by various groups? b. How is it distinct from statistical heterogeneity? c. How does it fit with other issues that have been addressed by the AHRQ Methods Manual for CERs? 2. How have systematic reviews dealt with clinical heterogeneity in the key questions? a. What questions have been asked? b. How have they pre-identified population subgroups with common clinical characteristics that modify their intervention-outcome association? c. What are best practices in key questions and how these subgroups have been identified? 3. How have systematic reviews dealt with clinical heterogeneity in the review process? a. What do guidance documents of various systematic review groups recommend? b. How have EPCs handled clinical heterogeneity in their reviews? c. What are best practices in searching for and interpreting results for particular subgroups with common clinical characteristics that may modify their intervention-outcome association? 4. What are critiques in how systematic reviews handle clinical heterogeneity? a. What are critiques from specific reviews (peer and public) on how EPCs handled clinical heterogeneity? b. What general critiques (in the literature) have been made against how systematic reviews handle clinical heterogeneity? 5. What evidence is there to support how to best address clinical heterogeneity in a systematic review? 6. What questions should an EPC work group on clinical heterogeneity address? Heterogeneity (of any type) in EPC reviews is important because its appearance suggests that included studies differed on one or more dimensions such as patient demographics, study designs, coexisting conditions, or other factors. EPCs then need to clarify for clinical and other audiences, collectively referred to as stakeholders, what are the potential causes of the heterogeneity in their results. This will allow the stakeholders to understand whether and to what degree they can apply this information to their own patients or constituents. Of greatest importance for this project was clinical heterogeneity, which we define as the variation in study population characteristics, coexisting conditions, cointerventions, and outcomes evaluated across studies included in an SR or CER that may influence or modify the magnitude of the intervention measure of effect (e.g., odds ratio, risk ratio, risk difference).
An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
A comprehensive, up-to-date resource providing information about genetic influences on disorders of behavior.
Presents the Terminology and Methods of Mendelian Randomization for Epidemiological StudiesMendelian randomization uses genetic instrumental variables to make inferences about causal effects based on observational data. It, therefore, can be a reliable way of assessing the causal nature of risk factors, such as biomarkers, for a wide range of disea