Download Free Statistical Methods For Geographers Book in PDF and EPUB Free Download. You can read online Statistical Methods For Geographers and write the review.

Statistical Methods for Geography is the essential introduction for geography students looking to fully understand and apply key statistical concepts and techniques. Now in its fifth edition, this text is an accessible statistics ‘101’ focused on student learning, and includes definitions, examples, and exercises throughout. Fully integrated with online self-assessment exercises and video overviews, it explains everything required to get full credits for any undergraduate statistics module. The fifth edition of this bestselling text includes: · Coverage of descriptive statistics, probability, inferential statistics, hypothesis testing and sampling, variance, correlation, regression analysis, spatial patterns, spatial data reduction using factor analysis and cluster analysis. · New examples from physical geography and additional real-world examples. · Updated in-text and online exercises along with downloadable datasets. This is the only text you’ll need for undergraduate courses in statistical analysis, statistical methods, and quantitative geography.
A textbook for advanced undergraduate/first year graduate level courses in statistical methods in geography. Presents methods useful in research design, hypothesis testing, and analyzing spatial and functional relationships. Introduces basic statistical terms and techniques for displaying and describing distributions, and covers a range of working methods including probability and sampling, simple linear regression, extensions of the simple linear model to multiple regression and its assumptions, stepwise logit regression, and canonical and discriminant analysis.
Practical Statistics for Geographers and Earth Scientists provides an introductory guide to the principles and application of statistical analysis in context. This book helps students to gain the level of competence in statistical procedures necessary for independent investigations, field-work and other projects. The aim is to explain statistical techniques using data relating to relevant geographical, geospatial, earth and environmental science examples, employing graphics as well as mathematical notation for maximum clarity. Advice is given on asking the appropriate preliminary research questions to ensure that the correct data is collected for the chosen statistical analysis method. The book offers a practical guide to making the transition from understanding principles of spatial and non-spatial statistical techniques to planning a series analyses and generating results using statistical and spreadsheet computer software. Learning outcomes included in each chapter International focus Explains the underlying mathematical basis of spatial and non-spatial statistics Provides an geographical, geospatial, earth and environmental science context for the use of statistical methods Written in an accessible, user-friendly style Datasets available on accompanying website at www.wiley.com/go/Walford
Introduces the techniques and concepts of statistics in human and physical geography. This book explains not only how to apply quantitative tools but also why and how they work. It helps students gain important skills for utilizing conventional and spatial statistics in their own research, as well as for critically evaluating the work of others.
This book is aimed directly at students of geography, particularly those who lack confidence in manipulating numbers. The aim is not to teach the mathematics behind statistical tests, but to focus on the logic, so that students can choose the most appropriate tests, apply them in the most convenient way and make sense of the results. Introductory chapters explain how to use statistical methods and then the tests are arranged according to the type of data that they require. Diagrams are used to guide students toward the most appropriate tests. The focus is on nonparametric methods that make very few assumptions and are appropriate for the kinds of data that many students will collect. Parametric methods, including Student’s t-tests, correlation and regression are also covered. Although aimed directly at geography students at senior undergraduate and graduate level, this book provides an accessible introduction to a wide range of statistical methods and will be of value to students and researchers in allied disciplines including Earth and environmental science, and the social sciences.
Written for undergraduate geography majors and entry-level graduate students with limited backgrounds in statistical analysis and methods, McGrew and Monroe provide a comprehensive and understandable introduction to statistical methods in a problem-solving framework. Engaging examples and problems are drawn from a variety of topical areas in both human and physical geography and are fully integrated into the text. Without compromising statistical rigor or oversimplifying, the authors stress the importance of written narratives that explain each statistical technique. After introducing basic statistical concepts and terminology, the authors focus on nonspatial and spatial descriptive statistics. They transition to inferential problem solving, including probability, sampling, and estimation, before delving deeper into inferential statistics for geographic problem solving. The final chapters examine the related techniques of correlation and regression. A list of major goals and objectives is included at the end of each chapter, allowing students to monitor their own progress and mastery of geographic statistical materials. An epilogue, offering over 150 geographic situations, gives students a chance to figure out which statistical technique should be used for a particular situation.
Quantitative and Statistical Approaches to Geography: A Practical Manual is a practical introduction to some quantitative and statistical techniques of use to geographers and related scientists. This book is composed of 15 chapters, each begins with an outline of the purpose and necessary mechanics of a technique or group of techniques and is concluded with exercises and the particular approach adopted. These exercises aim to enhance student's ability to use the techniques as part of the process by which sound judgments are made according to scientific standards while tackling complex problems. After a brief introduction to the principles of quantitative and statistical geography, this book goes on dealing with the topics of measures of central tendency; probability statements and maps; the problem of time-dependence, time-series analysis, non-normality, and data transformations; and the elements of sampling methodology. Other chapters cover the confidence intervals and estimation from samples, statistical hypothesis testing, analysis of contingency tests, and non-parametric tests for independent and dependent samples. The final chapters consider the evaluation of correlation coefficients, regression prediction, and choice and limitations of statistical techniques. This book is of value to undergraduate geography students.
Providing a solid foundation for twenty-first-century scientists and engineers, Data Analysis and Statistics for Geography, Environmental Science, and Engineering guides readers in learning quantitative methodology, including how to implement data analysis methods using open-source software. Given the importance of interdisciplinary work in sustain
Statistics are important tools for validating theory, making predictions and engaging in policy research. They help to provide informed commentary about social and environmental issues, and to make the case for change. Knowledge of statistics is therefore a necessary skill for any student of geography or environmental science. This textbook is aimed at students on a degree course taking a module in statistics for the first time. It focuses on analysing, exploring and making sense of data in areas of core interest to physical and human geographers, and to environmental scientists. It covers the subject in a broadly conventional way from descriptive statistics, through inferential statistics to relational statistics but does so with an emphasis on applied data analysis throughout.