Download Free Statistical Methods Connections Equivalencies And Relationships Book in PDF and EPUB Free Download. You can read online Statistical Methods Connections Equivalencies And Relationships and write the review.

The primary purpose of this book is to introduce the reader to a wide variety of interesting and useful connections, relationships, and equivalencies between and among conventional and permutation statistical methods. There are approximately 320 statistical connections and relationships described in this book. For each connection or connections the tests are described, the connection is explained, and an example analysis illustrates both the tests and the connection(s). The emphasis is more on demonstrations than on proofs, so little mathematical expertise is assumed. While the book is intended as a stand-alone monograph, it can also be used as a supplement to a standard textbook such as might be used in a second- or third-term course in conventional statistical methods. Students, faculty, and researchers in the social, natural, or hard sciences will find an interesting collection of statistical connections and relationships - some well-known, some more obscure, and some presented here for the first time.
The primary purpose of this book is to introduce the reader to a wide variety of interesting and useful connections, relationships, and equivalencies between and among conventional and permutation statistical methods. There are approximately 320 statistical connections and relationships described in this book. For each connection or connections the tests are described, the connection is explained, and an example analysis illustrates both the tests and the connection(s). The emphasis is more on demonstrations than on proofs, so little mathematical expertise is assumed. While the book is intended as a stand-alone monograph, it can also be used as a supplement to a standard textbook such as might be used in a second- or third-term course in conventional statistical methods. Students, faculty, and researchers in the social, natural, or hard sciences will find an interesting collection of statistical connections and relationships - some well-known, some more obscure, and some presented here for the first time.
The environment for obtaining information and providing statistical data for policy makers and the public has changed significantly in the past decade, raising questions about the fundamental survey paradigm that underlies federal statistics. New data sources provide opportunities to develop a new paradigm that can improve timeliness, geographic or subpopulation detail, and statistical efficiency. It also has the potential to reduce the costs of producing federal statistics. The panel's first report described federal statistical agencies' current paradigm, which relies heavily on sample surveys for producing national statistics, and challenges agencies are facing; the legal frameworks and mechanisms for protecting the privacy and confidentiality of statistical data and for providing researchers access to data, and challenges to those frameworks and mechanisms; and statistical agencies access to alternative sources of data. The panel recommended a new approach for federal statistical programs that would combine diverse data sources from government and private sector sources and the creation of a new entity that would provide the foundational elements needed for this new approach, including legal authority to access data and protect privacy. This second of the panel's two reports builds on the analysis, conclusions, and recommendations in the first one. This report assesses alternative methods for implementing a new approach that would combine diverse data sources from government and private sector sources, including describing statistical models for combining data from multiple sources; examining statistical and computer science approaches that foster privacy protections; evaluating frameworks for assessing the quality and utility of alternative data sources; and various models for implementing the recommended new entity. Together, the two reports offer ideas and recommendations to help federal statistical agencies examine and evaluate data from alternative sources and then combine them as appropriate to provide the country with more timely, actionable, and useful information for policy makers, businesses, and individuals.
Providing a much-needed bridge between elementary statistics courses and advanced research methods courses, Understanding Advanced Statistical Methods helps students grasp the fundamental assumptions and machinery behind sophisticated statistical topics, such as logistic regression, maximum likelihood, bootstrapping, nonparametrics, and Bayesian methods. The book teaches students how to properly model, think critically, and design their own studies to avoid common errors. It leads them to think differently not only about math and statistics but also about general research and the scientific method. With a focus on statistical models as producers of data, the book enables students to more easily understand the machinery of advanced statistics. It also downplays the "population" interpretation of statistical models and presents Bayesian methods before frequentist ones. Requiring no prior calculus experience, the text employs a "just-in-time" approach that introduces mathematical topics, including calculus, where needed. Formulas throughout the text are used to explain why calculus and probability are essential in statistical modeling. The authors also intuitively explain the theory and logic behind real data analysis, incorporating a range of application examples from the social, economic, biological, medical, physical, and engineering sciences. Enabling your students to answer the why behind statistical methods, this text teaches them how to successfully draw conclusions when the premises are flawed. It empowers them to use advanced statistical methods with confidence and develop their own statistical recipes. Ancillary materials are available on the book’s website.
Individual Development and Social Change: Explanatory Analysis represents a convergence of three lines of emphasis now visible in developmental research and theory building. The three are (1) the life course as a focus for the study of development and social change, and their interrelationships; (2) the life-span orientation to the study of individual development, with its acknowledgment of the salience of contextual features for understanding development; and (3) the growth of methodological innovations that provide more appropriate and powerful ways of exploiting data gathered to describe and explain developmental change processes. The book opens with a study on how major cultural change originates and unfolds over time. This is followed by separate chapters on the use of sequential designs for explanatory analyses; evolutionary aspects of social and individual development; the concepts of the theory of causal and weak causal regressive dependence; and the concepts of age, period, and cohort from the perspective of developmental psychology. Subsequent chapters examine development and aging as lifelong processes of historical populations; the methodological integration of natural and cultural science perspectives in developmental psychology; and application of the multifaceted methodology to the mutuality of constraint between sociocultural group and individual dynamics.
"This book is an in-depth collection aimed at developers and scholars of research articles from the expanding field of digital libraries"--Provided by publisher.
Making Sense of Statistical Methods in Social Research is a critical introduction to the use of statistical methods in social research. It provides a unique approach to statistics that concentrates on helping social researchers think about the conceptual basis for the statistical methods they′re using. Whereas other statistical methods books instruct students in how to get through the statistics-based elements of their chosen course with as little mathematical knowledge as possible, this book aims to improve students′ statistical literacy, with the ultimate goal of turning them into competent researchers. Making Sense of Statistical Methods in Social Research contains careful discussion of the conceptual foundation of statistical methods, specifying what questions they can, or cannot, answer. The logic of each statistical method or procedure is explained, drawing on the historical development of the method, existing publications that apply the method, and methodological discussions. Statistical techniques and procedures are presented not for the purpose of showing how to produce statistics with certain software packages, but as a way of illuminating the underlying logic behind the symbols. The limited statistical knowledge that students gain from straight forward ′how-to′ books makes it very hard for students to move beyond introductory statistics courses to postgraduate study and research. This book should help to bridge this gap.
Countries have been competing against each other in order to attract financial investment and human capital for decades. However, emerging economies have a long way to go before they achieve the same levels of competitiveness as a developed economy. Lack of firm institutions, inadequate infrastructure, and a lack of trust in the legal system are urgent and unavoidable factors that emerging economies must address. The Handbook of Research on Increasing the Competitiveness of SMEs provides innovative insights on integrating, adapting, and building models and strategies compatible with the development of competitiveness in small and medium enterprises in emerging countries. The content within this publication examines quality management, organizational leadership, and digital security. It is designed for policymakers, entrepreneurs, managers, executives, business professionals, academicians, researchers, and students.