Download Free Statistical Mechanics Of The Main Phase Transition Of A Lipid Bilayer Book in PDF and EPUB Free Download. You can read online Statistical Mechanics Of The Main Phase Transition Of A Lipid Bilayer and write the review.

This book is the first collection of lipid-membrane research conducted by leading mechanicians and experts in continuum mechanics. It brings the overall intellectual framework afforded by modern continuum mechanics to bear on a host of challenging problems in lipid membrane physics. These include unique and authoritative treatments of differential geometry, shape elasticity, surface flow and diffusion, interleaf membrane friction, phase transitions, electroelasticity and flexoelectricity, and computational modelling.
Advances in Planar Lipid Bilayers and Liposomes volumes cover a broad range of topics, including main arrangements of the reconstituted system, namely planar lipid bilayers as well as spherical liposomes. The invited authors present the latest results of their own research groups in this exciting multidisciplinary field. Incorporates contributions from newcomers and established and experienced researchers Explores the planar lipid bilayer systems and spherical liposomes from both theoretical and experimental perspectives Serves as an indispensable source of information for new scientists
This important and timely book deals with the theoretical and experimental investigation of the phase transitions which occur in complex fluid systems, namely lyotropic systems, microemulsions, colloids, biological membranes, and ferrofluids. It contains 17-odd review papers from the major contributors to this rapidly growing field of research, summarizing the main results obtained in the description and understanding of the phase transitions taking place between the isotropic, nematic, cholesteric, lamellar, hexagonal, and cubic mesophases of complex fluids.
This book demonstrates the usefulness of tools from statistical mechanics for biology. It includes the new tendencies in topics like membranes, vesicles, microtubules, molecular motors, DNA, protein folding, phase transitions in biological systems, evolution, population dynamics, neural systems and biological oscillators, with special emphasis on the importance of statistical mechanics in their development. The book addresses researchers and graduate students.
This invaluable book explores the delicate interplay between geometry and statistical mechanics in materials such as microemulsions, wetting and growth interfaces, bulk lyotropic liquid crystals, chalcogenide glasses and sheet polymers, using tools from the fields of polymer physics, differential geometry, field theory and critical phenomena. Several chapters have been updated relative to the classic 1989 edition. Moreover, there are now three entirely new chapters — on effects of anisotropy and heterogeneity, on fixed connectivity membranes and on triangulated surface models of fluctuating membranes.
This invaluable book explores the delicate interplay between geometry and statistical mechanics in materials such as microemulsions, wetting and growth interfaces, bulk lyotropic liquid crystals, chalcogenide glasses and sheet polymers, using tools from the fields of polymer physics, differential geometry, field theory and critical phenomena. Several chapters have been updated relative to the classic 1989 edition. Morever, there are now three entirely new chapters -- on effects of anisotropy and heterogeneity, on fixed connectivity membranes and on triangulated surface models of fluctuating membranes.