Download Free Statistical Mechanics Of Nonequilibrium Processes Basic Concepts Kinetic Theory Book in PDF and EPUB Free Download. You can read online Statistical Mechanics Of Nonequilibrium Processes Basic Concepts Kinetic Theory and write the review.

This is the first part of a two-volume textbook on the modern statistical theory of nonequilibrium processes. In distinction to currently available textbooks and monographs on this subject, the presentation of a wide range of nonequilibrium phenomena in many-particle systems is based on the unified approach which is a natural extension of the method of Gibbs ensembles to the nonequilibrium case. The general method of nonequilibrium ensembles is applied to describe kinetic processes in classical and quantum systems. In addition to standard examples, topical problems of the modern kinetic theory are considered, including many-particle effects in classical kinetics, non-Markovian kinetic equations for plasmas, and quantum kinetic processes in the presence of strong external fields. Exercises and problems for readers are also included. The book is self-contained and accessible to students having read the standard course in statistical physics. It is also of interest for specialists working in solid state physics, chemical physics, and physics of plasma and fluids.
A unified approach to the modern statistical theory of nonequilibrium processes. This book explores applications of this unified approach to classical and quantum kinetic theory of nonideal gases, to plasmas, and to solid state physics.
Nonequilibrium statistical mechanics has a long history featuring diverse aspects. It has been a major research field in physics and will remain so in the future. Even regarding the concept of entropy, there exists a longstanding problem concerning its definition for a system in a state far from equilibrium. In this Special Issue, we offered the possibility to discuss and present up-to-date problems that were not necessarily restricted to statistical mechanics. Theoretical and experimental papers are both presented, in addition to unifying research works. As the entropy itself is the central element of nonequilibrium processes, papers discuss various formulations of the second law and its consequences. In this Special Issue, recent progress in kinetic approaches to hydrodynamics, rational extended thermodynamics, entropy in a strongly nonequilibrium stationary state, and related topics are reported as both review articles as well as original research works.
Statistical Mechanics, Kinetic Theory, and Stochastic Processes presents the statistical aspects of physics as a "living and dynamic" subject. In order to provide an elementary introduction to kinetic theory, physical systems in which particle-particle interaction can be neglected are considered. Transport phenomena in the free-molecular flow region for gases and the transport of thermal radiation are discussed. Discrete random processes such as random walk, binomial and Poisson distributions, and throwing of dice are studied by means of the characteristic function. Comprised of 11 chapters, this book begins with an introduction to the mass point gas as well as some elementary properties of space and velocity distributions. The discussion then turns to radiation and its interaction with an atom; probability, statistics, and conditional probability; intermolecular interactions; transport phenomena; and statistical thermodynamics. Molecular systems at low densities are also considered, together with non-ideal and real gases; liquids and solids; and stochastic processes, noise, and fluctuations. In particular, the response of atoms and molecules to perturbations and scattering by crystals, liquids, and high-pressure gases are examined. This monograph will be useful for undergraduate students, practitioners, and researchers in physics.
Direct, accessible approach covers elementary statistical thermodynamics, statistical thermodynamics of interacting systems and solids, kinetic theory, and new concepts for treating equilibrium and nonequilibrium statistical processes. Many examples, end-of-chapter problems with solutions. Appendixes. 1990 edition.
Recent years have witnessed a resurgence in the kinetic approach to dynamic many-body problems. Modern kinetic theory offers a unifying theoretical framework within which a great variety of seemingly unrelated systems can be explored in a coherent way. Kinetic methods are currently being applied in such areas as the dynamics of colloidal suspensions, granular material flow, electron transport in mesoscopic systems, the calculation of Lyapunov exponents and other properties of classical many-body systems characterised by chaotic behaviour. The present work focuses on Brownian motion, dynamical systems, granular flows, and quantum kinetic theory.
This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on nonrelativistic contexts, it provides a comprehensive picture of the relativistic covariant kinetic theory of gases and relativistic hydrodynamics of gases.Relativistic theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids). They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respect to macroscopic fluxes or thermodynamic forces. The irreversible covariant Boltzmann as well as the covariant form of the Boltzmann-Nordheim-Uehling-Uhlenbeck equation is used for deriving theories of irreversible transport equations and generalized hydrodynamic equations for either classical gases or quantum gases. They all conform rigorously to the tenet. All macroscopic observables described by the so-formulated theories therefore are likewise expected to strictly obey the tenet.
Chapters 1 to 5 include a description of the philosophy, foundations, and construction (methodology) of the formalism, including the derivation of a nonequilibrium grand-canonical ensemble for far-from-equilibrium systems as well as the derivation of a quantum nonlinear kinetic theory and a response function theory together with a theory of scattering. In chapter 6 applications of the theory are cataloged, making comparisons with experimental data (a basic step for the validation of any theory). Chapter 7 is devoted to the description of irreversible thermodynamics, providing a far-reaching generalization of Informational-Statistical Thermodynamics. The last chapter gives an overall picture of the formalism, and questions and criticisms related to it are discussed.
In this monograph, nonequilibrium statistical mechanics is developed by means of ensemble methods on the basis of the Boltzmann equation, the generic Boltzmann equations for classical and quantum dilute gases, and a generalised Boltzmann equation for dense simple fluids. The theories are developed in forms parallel with the equilibrium Gibbs ensemble theory in a way fully consistent with the laws of thermodynamics. The generalised hydrodynamics equations are the integral part of the theory and describe the evolution of macroscopic processes in accordance with the laws of thermodynamics of systems far removed from equilibrium. Audience: This book will be of interest to researchers in the fields of statistical mechanics, condensed matter physics, gas dynamics, fluid dynamics, rheology, irreversible thermodynamics and nonequilibrium phenomena.