Download Free Statistical Mechanics Of Liquids And Solutions Book in PDF and EPUB Free Download. You can read online Statistical Mechanics Of Liquids And Solutions and write the review.

The statistical mechanical theory of liquids and solutions is a fundamental area of physical sciences with important implications for many industrial applications. This book shows how you can start from basic laws for the interactions and motions of microscopic particles and calculate how macroscopic systems of these particles behave, thereby explaining properties of matter at the scale that we perceive. Using this microscopic, molecular approach, the text emphasizes clarity of physical explanations for phenomena and mechanisms relevant to fluids, addressing the structure and behavior of liquids and solutions under various conditions. A notable feature is the author’s treatment of forces between particles that include nanoparticles, macroparticles, and surfaces. The book also provides an expanded, in-depth treatment of polar liquids and electrolytes.
In a simple and accessible form, this book presents a unified approach to the physics of the liquid state, both in and out of equilibrium. It discerns, behind the seemingly anarchistic proliferation of phenomena observable in the liquid state, the sequence of causes and effects and, where appropriate, the underlying rules that preside over the general principles. The book begins by introducing the fundamental concepts of statistical mechanics, such as classical and quantum mechanics, probability theory, and the kinetic theory of gases, before moving on to discuss theoretical methods in order to contextualise the study of liquids. The last final section is devoted to ordering in complex fluids. It includes detailed technical notes and explicit calculations, and will appeal to graduate students in physics and chemistry. It will also be of interest the reader interested in statistical mechanics and their application to the physics of dense matter. This book will certainly become an indispensable reference for students and researchers who wish to become familiar with a multifaceted process looking towards new horizons.
Exploring important theories for understanding freezing and the liquid-glass transition, this book is useful for graduate students and researchers in soft-condensed matter physics, chemical physics and materials science. It details recent ideas and key developments, providing an up-to-date view of current understanding. The standard tools of statistical physics for the dense liquid state are covered. The freezing transition is described from the classical density functional approach. Classical nucleation theory as well as applications of density functional methods for nucleation of crystals from the melt are discussed, and compared to results from computer simulation of simple systems. Discussions of supercooled liquids form a major part of the book. Theories of slow dynamics and the dynamical heterogeneities of the glassy state are presented, as well as nonequilibrium dynamics and thermodynamic phase transitions at deep supercooling. Mathematical treatments are given in full detail so readers can learn the basic techniques.
This book gives a comprehensive and up-to-date treatment of the theory of "simple" liquids. The new second edition has been rearranged and considerably expanded to give a balanced account both of basic theory and of the advances of the past decade. It presents the main ideas of modern liquid state theory in a way that is both pedagogical and self-contained. The book should be accessible to graduate students and research workers, both experimentalists and theorists, who have a good background in elementary mechanics. - Compares theoretical deductions with experimental results - Molecular dynamics - Monte Carlo computations - Covers ionic, metallic, and molecular liquids
Fifty years ago solution chemistry occupied a major fraction of physical chemistry textbooks, and dealt mainly with classical thermodynamics, phase equilibria, and non-equilibrium phenomena, especially those related to electrochemistry. Much has happened in the intervening period, with tremendous advances in theory and the development of important new experimental techniques. This book brings the reader through the developments from classical macroscopic descriptions to more modern microscopic details.
This book aims to cover a broad range of topics in statistical physics, including statistical mechanics (equilibrium and non-equilibrium), soft matter and fluid physics, for applications to biological phenomena at both cellular and macromolecular levels. It is intended to be a graduate level textbook, but can also be addressed to the interested senior level undergraduate. The book is written also for those involved in research on biological systems or soft matter based on physics, particularly on statistical physics. Typical statistical physics courses cover ideal gases (classical and quantum) and interacting units of simple structures. In contrast, even simple biological fluids are solutions of macromolecules, the structures of which are very complex. The goal of this book to fill this wide gap by providing appropriate content as well as by explaining the theoretical method that typifies good modeling, namely, the method of coarse-grained descriptions that extract the most salient features emerging at mesoscopic scales. The major topics covered in this book include thermodynamics, equilibrium statistical mechanics, soft matter physics of polymers and membranes, non-equilibrium statistical physics covering stochastic processes, transport phenomena and hydrodynamics. Generic methods and theories are described with detailed derivations, followed by applications and examples in biology. The book aims to help the readers build, systematically and coherently through basic principles, their own understanding of nonspecific concepts and theoretical methods, which they may be able to apply to a broader class of biological problems.
Presents a unified formulation from first principles of the Hailtonian and statistical mechanics of metallic and insulating crystals, amorphous solids, and liquids.
"There is a symbiotic relationship between theoretical nonequilibrium statistical mechanics on the one hand and the theory and practice of computer simulation on the other. Sometimes, the initiative for progress has been with the pragmatic requirements of computer simulation and at other times, the initiative has been with the fundamental theory of nonequilibrium processes. This book summarises progress in this field up to 1990"--Publisher's description.
Fluid Mechanics, Second Edition deals with fluid mechanics, that is, the theory of the motion of liquids and gases. Topics covered range from ideal fluids and viscous fluids to turbulence, boundary layers, thermal conduction, and diffusion. Surface phenomena, sound, and shock waves are also discussed, along with gas flow, combustion, superfluids, and relativistic fluid dynamics. This book is comprised of 16 chapters and begins with an overview of the fundamental equations of fluid dynamics, including Euler's equation and Bernoulli's equation. The reader is then introduced to the equations of motion of a viscous fluid; energy dissipation in an incompressible fluid; damping of gravity waves; and the mechanism whereby turbulence occurs. The following chapters explore the laminar boundary layer; thermal conduction in fluids; dynamics of diffusion of a mixture of fluids; and the phenomena that occur near the surface separating two continuous media. The energy and momentum of sound waves; the direction of variation of quantities in a shock wave; one- and two-dimensional gas flow; and the intersection of surfaces of discontinuity are also also considered. This monograph will be of interest to theoretical physicists.