Download Free Statistical Concepts And Applications In Clinical Medicine Book in PDF and EPUB Free Download. You can read online Statistical Concepts And Applications In Clinical Medicine and write the review.

Statistical Concepts and Applications in Clinical Medicine presents a unique, problem-oriented approach to using statistical methods in clinical medical practice through each stage of the clinical process, including observation, diagnosis, and treatment. The authors present each consultative problem in its original form, then describe the process of problem formulation, develop the appropriate statistical models, and interpret the statistical analysis in the context of the real problem. Their treatment provides clear, accessible explanations of statistical methods. The text includes end-of-chapter exercises that help develop formulatory, analytic, and interpretative skills.
Statistical Concepts and Applications in Clinical Medicine presents a unique, problem-oriented approach to using statistical methods in clinical medical practice through each stage of the clinical process, including observation, diagnosis, and treatment. The authors present each consultative problem in its original form, then describe the process o
The second edition of this volume provides insight and practical illustrations on how modern statistical concepts and regression methods can be applied in medical prediction problems, including diagnostic and prognostic outcomes. Many advances have been made in statistical approaches towards outcome prediction, but a sensible strategy is needed for model development, validation, and updating, such that prediction models can better support medical practice. There is an increasing need for personalized evidence-based medicine that uses an individualized approach to medical decision-making. In this Big Data era, there is expanded access to large volumes of routinely collected data and an increased number of applications for prediction models, such as targeted early detection of disease and individualized approaches to diagnostic testing and treatment. Clinical Prediction Models presents a practical checklist that needs to be considered for development of a valid prediction model. Steps include preliminary considerations such as dealing with missing values; coding of predictors; selection of main effects and interactions for a multivariable model; estimation of model parameters with shrinkage methods and incorporation of external data; evaluation of performance and usefulness; internal validation; and presentation formatting. The text also addresses common issues that make prediction models suboptimal, such as small sample sizes, exaggerated claims, and poor generalizability. The text is primarily intended for clinical epidemiologists and biostatisticians. Including many case studies and publicly available R code and data sets, the book is also appropriate as a textbook for a graduate course on predictive modeling in diagnosis and prognosis. While practical in nature, the book also provides a philosophical perspective on data analysis in medicine that goes beyond predictive modeling. Updates to this new and expanded edition include: • A discussion of Big Data and its implications for the design of prediction models • Machine learning issues • More simulations with missing ‘y’ values • Extended discussion on between-cohort heterogeneity • Description of ShinyApp • Updated LASSO illustration • New case studies
Medicine deals with treatments that work often but not always, so treatment success must be based on probability. Statistical methods lift medical research from the anecdotal to measured levels of probability. This book presents the common statistical methods used in 90% of medical research, along with the underlying basics, in two parts: a textbook section for use by students in health care training programs, e.g., medical schools or residency training, and a reference section for use by practicing clinicians in reading medical literature and performing their own research. The book does not require a significant level of mathematical knowledge and couches the methods in multiple examples drawn from clinical medicine, giving it applicable context. Easy-to-follow format incorporates medical examples, step-by-step methods, and check yourself exercises Two-part design features course material and a professional reference section Chapter summaries provide a review of formulas, method algorithms, and check lists Companion site links to statistical databases that can be downloaded and used to perform the exercises from the book and practice statistical methods New in this Edition: New chapters on: multifactor tests on means of continuous data, equivalence testing, and advanced methods New topics include: trial randomization, treatment ethics in medical research, imputation of missing data, and making evidence-based medical decisions Updated database coverage and additional exercises Expanded coverage of numbers needed to treat and to benefit, and regression analysis including stepwise regression and Cox regression Thorough discussion on required sample size
A Statistical Approach to Genetic Epidemiology After studying statistics and mathematics at the University of Munich and obtaining his doctoral degree from the University of Dortmund, Andreas Ziegler received the Johann-Peter-Süssmilch-Medal of the German Association for Medical Informatics, Biometry and Epidemiology for his post-doctoral work on “Model Free Linkage Analysis of Quantitative Traits” in 1999. In 2004, he was one of the recipients of the Fritz-Linder-Forum-Award from the German Association for Surgery.
The essence of any root cause analysis in our modern quality thinking is to go beyond the actual problem. This means not only do we have to fix the problem at hand but we also have to identify why the failure occurred and what was the opportunity to apply the appropriate knowledge to avoid the problem in the future. Essential Statistical Concepts f
Statistical Shape and Deformation Analysis: Methods, Implementation and Applications contributes enormously to solving different problems in patient care and physical anthropology, ranging from improved automatic registration and segmentation in medical image computing to the study of genetics, evolution and comparative form in physical anthropology and biology. This book gives a clear description of the concepts, methods, algorithms and techniques developed over the last three decades that is followed by examples of their implementation using open source software. Applications of statistical shape and deformation analysis are given for a wide variety of fields, including biometry, anthropology, medical image analysis and clinical practice. - Presents an accessible introduction to the basic concepts, methods, algorithms and techniques in statistical shape and deformation analysis - Includes implementation examples using open source software - Covers real-life applications of statistical shape and deformation analysis methods
Now in its fourth edition, Medical Statistics at a Glance is a concise and accessible introduction to this complex subject. It provides clear instruction on how to apply commonly used statistical procedures in an easy-to-read, comprehensive and relevant volume. This new edition continues to be the ideal introductory manual and reference guide to medical statistics, an invaluable companion for statistics lectures and a very useful revision aid. This new edition of Medical Statistics at a Glance: Offers guidance on the practical application of statistical methods in conducting research and presenting results Explains the underlying concepts of medical statistics and presents the key facts without being unduly mathematical Contains succinct self-contained chapters, each with one or more examples, many of them new, to illustrate the use of the methodology described in the chapter. Now provides templates for critical appraisal, checklists for the reporting of randomized controlled trials and observational studies and references to the EQUATOR guidelines for the presentation of study results for many other types of study Includes extensive cross-referencing, flowcharts to aid the choice of appropriate tests, learning objectives for each chapter, a glossary of terms and a glossary of annotated full computer output relevant to the examples in the text Provides cross-referencing to the multiple choice and structured questions in the companion Medical Statistics at a Glance Workbook Medical Statistics at a Glance is a must-have text for undergraduate and post-graduate medical students, medical researchers and biomedical and pharmaceutical professionals.
Methods and Applications of Statistics in Clinical Trials, Volume 2: Planning, Analysis, and Inferential Methods includes updates of established literature from the Wiley Encyclopedia of Clinical Trials as well as original material based on the latest developments in clinical trials. Prepared by a leading expert, the second volume includes numerous contributions from current prominent experts in the field of medical research. In addition, the volume features: • Multiple new articles exploring emerging topics, such as evaluation methods with threshold, empirical likelihood methods, nonparametric ROC analysis, over- and under-dispersed models, and multi-armed bandit problems • Up-to-date research on the Cox proportional hazard model, frailty models, trial reports, intrarater reliability, conditional power, and the kappa index • Key qualitative issues including cost-effectiveness analysis, publication bias, and regulatory issues, which are crucial to the planning and data management of clinical trials
Recent advances in brain science measurement technology have given researchers access to very large-scale time series data such as EEG/MEG data (20 to 100 dimensional) and fMRI (140,000 dimensional) data. To analyze such massive data, efficient computational and statistical methods are required.Time Series Modeling of Neuroscience Data shows how to