Download Free Statistical Analysis Quick Reference Guidebook Book in PDF and EPUB Free Download. You can read online Statistical Analysis Quick Reference Guidebook and write the review.

A practical `cut to the chase′ handbook that quickly explains the when, where, and how of statistical data analysis as it is used for real-world decision-making in a wide variety of disciplines. In this one-stop reference, the authors provide succinct guidelines for performing an analysis, avoiding pitfalls, interpreting results and reporting outcomes.
The updated Second Edition of Alan C. Elliott and Wayne A. Woodward’s "cut to the chase" IBM SPSS guide quickly explains the when, where, and how of statistical data analysis as it is used for real-world decision making in a wide variety of disciplines. This one-stop reference provides succinct guidelines for performing an analysis using SPSS software, avoiding pitfalls, interpreting results, and reporting outcomes. Written from a practical perspective, IBM SPSS by Example, Second Edition provides a wealth of information—from assumptions and design to computation, interpretation, and presentation of results—to help users save time, money, and frustration.
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
How do you bridge the gap between what you learned in your statistics course and the questions you want to answer in your real-world research? Oriented towards distinct questions in a "How do I?" or "When should I?" format, Your Statistical Consultant is the equivalent of the expert colleague down the hall who fields questions about describing, explaining, and making recommendations regarding thorny or confusing statistical issues. The book serves as a compendium of statistical knowledge, both theoretical and applied, that addresses the questions most frequently asked by students, researchers and instructors. Written to be responsive to a wide range of inquiries and levels of expertise, the book is flexibly organized so readers can either read it sequentially or turn directly to the sections that correspond to their concerns.
A perfect supplement for an introductory statics course. Quick Guide to IBM® SPSS®: Statistical Analysis With Step-by-Step Examples gives students the extra guidance with SPSS they need without taking up valuable in-class time. A practical, accessible guide for using software while doing data analysis in the social sciences, students can learn SPSS on their own, allowing instructors to focus on the concepts and calculations in their lectures, rather than SPSS tutorials. Designed to work across disciplines, the authors have provided a number of SPSS "step-by-step" examples in chapters showing the user how to plan a study, prepare data for analysis, perform the analysis and interpret the output from SPSS. The new Third Edition covers IBM® SPSS® version 25, includes a new section on Syntax, and all chapters have been updated to reflect current menu options along with many SPSS screenshots, making the process much simpler for the user. In addition, helpful hints and insights are provided through the features "Tips and Caveats" and "Sidebars."
Making Sense of Statistical Methods in Social Research is a critical introduction to the use of statistical methods in social research. It provides a unique approach to statistics that concentrates on helping social researchers think about the conceptual basis for the statistical methods they′re using. Whereas other statistical methods books instruct students in how to get through the statistics-based elements of their chosen course with as little mathematical knowledge as possible, this book aims to improve students′ statistical literacy, with the ultimate goal of turning them into competent researchers. Making Sense of Statistical Methods in Social Research contains careful discussion of the conceptual foundation of statistical methods, specifying what questions they can, or cannot, answer. The logic of each statistical method or procedure is explained, drawing on the historical development of the method, existing publications that apply the method, and methodological discussions. Statistical techniques and procedures are presented not for the purpose of showing how to produce statistics with certain software packages, but as a way of illuminating the underlying logic behind the symbols. The limited statistical knowledge that students gain from straight forward ′how-to′ books makes it very hard for students to move beyond introductory statistics courses to postgraduate study and research. This book should help to bridge this gap.
This book helps students develop a conceptual understanding of a variety of statistical tests by linking the statistics with the computational steps and output from SPSS. Learning how statistical ideas map onto computation in SPSS will help students build a better understanding of both. For example, seeing exactly how the concept of variance is used in SPSS-how it is converted into a number based on real data, which other concepts it is associated with, and where it appears in various statistical tests-will not only help students understand how to use statistical tests in SPSS and how to interpret their output, but will also teach them about the concept of variance itself. Each chapter begins with a student-friendly explanation of the concept behind each statistical test and how the test relates to that concept. The authors then walk through the steps to compute the test in SPSS and the output, pointing out wherever possible how the SPSS procedure and output connects back to the conceptual underpinnings of the test. Each of the steps is accompanied by annotated screen shots from SPSS, and relevant components of output are highlighted in both the text and in the figures. Sections explain the conceptual machinery underlying the statistical tests. In contrast to merely presenting the equations for computing the statistic, these sections describe the idea behind each test in plain language and help students make the connection between the ideas and SPSS procedures. These include extensive treatment of custom hypothesis testing in ANOVA, MANOVA, ANCOVA, and regression, and an entire chapter on the advanced matrix algebra functions available only through syntax in SPSS. The book will be appropriate for both advanced undergraduate and graduate level courses in statistics.
The spread of sophisticated computer packages and the machinery on which to run them has meant that procedures which were previously only available to experienced researchers with access to expensive machines and research students can now be carried out in a few seconds by almost every undergraduate. Understanding and Using Advanced Statistics provides the basis for gaining an understanding of what these analytic procedures do, when they should be used, and what the results provided signify. This comprehensive textbook guides students and researchers through the transition from simple statistics to more complex procedures with accessible language and illustration.
The AMA Manual of Style is a must-have resource for anyone involved in medical, health, and scientific publishing. Written by an expert committee of JAMA Network editors, this latest edition addresses issues that face authors, editors, and publishers in the digital age. Extensive updates are included in the References chapter, with examples of how to cite digital publications, preprints, databases, data repositories, podcasts, apps and interactive games, and social media. Full-color examples grace the chapter on data display, with newer types of graphic presentations and updated guidance on formatting tables and figures. The manual thoroughly covers ethical and legal issues such as authorship, conflicts of interest, scientific misconduct, intellectual property, open access and public access, and corrections. The Usage chapter has been revised to bring the manual up-to-date on word choice, especially in writing about individuals with diseases or conditions and from various socioeconomic, racial/ethnic, and sexual orientation populations. Specific nomenclature entries in many disciplines are presented to guide users in issues of diction, formatting, and preferred terminology. Guidance on numbers, SI units, and math has been updated, and the section on statistics and study design has undergone a major expansion. In sum, the answer to nearly any issue facing a writer or editor in medicine, health care, and related disciplines can be found in the 11th edition of the AMA Manual of Style. Available for institutional purchase or subscription or individual subscription. Visit AMAManualofStyle.com or contact your sales rep for more details.