Download Free Statistical Analysis Of Epidemiologic Data Book in PDF and EPUB Free Download. You can read online Statistical Analysis Of Epidemiologic Data and write the review.

This book combines applied and theoretical approaches to the analysis of epidemiologic issues. It goes beyond elementary material to deal with real problems generated by disease data, and delves into less usual areas such as the analysis of spatial distributions, survival data, proportional hazards regression, and "computer-intensive" approaches to statistical estimation. Each method discussed in the text is illustrated with examples which include complete sets of data. Using actual data demonstrates the strengths and weaknesses of different analytic approaches in describing a disease process. The goal of the book is to allow the reader to develop a clear understanding of analytic approaches to problems in epidemiologic data analysis without relying on sophisticated mathematics and advanced statistical theory. For the Second Edition a new chapter on the analysis of matched data has been added. This covers both discrete and continuous outcomes and explains both the classic analytic approach and the conditional logistic regression model. New sections have also been added on contingency table data, misclassification, and additive models underlying tabular data. In all the chapters there are new applications and other revisions that make this Second Edition a clearer and more helpful exposition of the way statistical tools are used to analyze epidemiologic data.
Bias analysis quantifies the influence of systematic error on an epidemiology study’s estimate of association. The fundamental methods of bias analysis in epi- miology have been well described for decades, yet are seldom applied in published presentations of epidemiologic research. More recent advances in bias analysis, such as probabilistic bias analysis, appear even more rarely. We suspect that there are both supply-side and demand-side explanations for the scarcity of bias analysis. On the demand side, journal reviewers and editors seldom request that authors address systematic error aside from listing them as limitations of their particular study. This listing is often accompanied by explanations for why the limitations should not pose much concern. On the supply side, methods for bias analysis receive little attention in most epidemiology curriculums, are often scattered throughout textbooks or absent from them altogether, and cannot be implemented easily using standard statistical computing software. Our objective in this text is to reduce these supply-side barriers, with the hope that demand for quantitative bias analysis will follow.
Highly praised for its broad, practical coverage, the second edition of this popular text incorporated the major statistical models and issues relevant to epidemiological studies. Epidemiology: Study Design and Data Analysis, Third Edition continues to focus on the quantitative aspects of epidemiological research. Updated and expanded, this edition shows students how statistical principles and techniques can help solve epidemiological problems. New to the Third Edition New chapter on risk scores and clinical decision rules New chapter on computer-intensive methods, including the bootstrap, permutation tests, and missing value imputation New sections on binomial regression models, competing risk, information criteria, propensity scoring, and splines Many more exercises and examples using both Stata and SAS More than 60 new figures After introducing study design and reviewing all the standard methods, this self-contained book takes students through analytical methods for both general and specific epidemiological study designs, including cohort, case-control, and intervention studies. In addition to classical methods, it now covers modern methods that exploit the enormous power of contemporary computers. The book also addresses the problem of determining the appropriate size for a study, discusses statistical modeling in epidemiology, covers methods for comparing and summarizing the evidence from several studies, and explains how to use statistical models in risk forecasting and assessing new biomarkers. The author illustrates the techniques with numerous real-world examples and interprets results in a practical way. He also includes an extensive list of references for further reading along with exercises to reinforce understanding. Web Resource A wealth of supporting material can be downloaded from the book’s CRC Press web page, including: Real-life data sets used in the text SAS and Stata programs used for examples in the text SAS and Stata programs for special techniques covered Sample size spreadsheet
This book examines statistical methods and models used in the fields of global health and epidemiology. It includes methods such as innovative probability sampling, data harmonization and encryption, and advanced descriptive, analytical and monitory methods. Program codes using R are included as well as real data examples. Contemporary global health and epidemiology involves a myriad of medical and health challenges, including inequality of treatment, the HIV/AIDS epidemic and its subsequent control, the flu, cancer, tobacco control, drug use, and environmental pollution. In addition to its vast scales and telescopic perspective; addressing global health concerns often involves examining resource-limited populations with large geographic, socioeconomic diversities. Therefore, advancing global health requires new epidemiological design, new data, and new methods for sampling, data processing, and statistical analysis. This book provides global health researchers with methods that will enable access to and utilization of existing data. Featuring contributions from both epidemiological and biostatistical scholars, this book is a practical resource for researchers, practitioners, and students in solving global health problems in research, education, training, and consultation.
For more information about the book, and to download STATA outputs for the case studies presented in each chapter, please visit www.oup.com/us/statisticaltools. --Book Jacket.
In the late 1980s, the National Cancer Institute initiated an investigation of cancer risks in populations near 52 commercial nuclear power plants and 10 Department of Energy nuclear facilities (including research and nuclear weapons production facilities and one reprocessing plant) in the United States. The results of the NCI investigation were used a primary resource for communicating with the public about the cancer risks near the nuclear facilities. However, this study is now over 20 years old. The U.S. Nuclear Regulatory Commission requested that the National Academy of Sciences provide an updated assessment of cancer risks in populations near USNRC-licensed nuclear facilities that utilize or process uranium for the production of electricity. Analysis of Cancer Risks in Populations near Nuclear Facilities: Phase 1 focuses on identifying scientifically sound approaches for carrying out an assessment of cancer risks associated with living near a nuclear facility, judgments about the strengths and weaknesses of various statistical power, ability to assess potential confounding factors, possible biases, and required effort. The results from this Phase 1 study will be used to inform the design of cancer risk assessment, which will be carried out in Phase 2. This report is beneficial for the general public, communities near nuclear facilities, stakeholders, healthcare providers, policy makers, state and local officials, community leaders, and the media.
This practical guide to survival data and its analysis for readers with a minimal background in statistics shows why the analytic methods work and how to effectively analyze and interpret epidemiologic and medical survival data with the help of modern computer systems. The introduction presents a review of a variety of statistical methods that are not only key elements of survival analysis but are also central to statistical analysis in general. Techniques such as statistical tests, transformations, confidence intervals, and analytic modeling are presented in the context of survival data but are, in fact, statistical tools that apply to understanding the analysis of many kinds of data. Similarly, discussions of such statistical concepts as bias, confounding, independence, and interaction are presented in the context of survival analysis and also are basic components of a broad range of applications. These topics make up essentially a 'second-year', one-semester biostatistics course in survival analysis concepts and techniques for non-statisticians.
This book is an expanded version of the Kahn's widely used text, An Introduction to Epidemiologic Methods (Oxford, 1983). It provides clear insight into the basic statistical tools used in epidemiology and is written so that those without advanced statistical training can comprehend the ideas underlying the analytical techniques. The authors emphasize the extent to which similar results are obtained from different methods, both simple and complex. To this edition they have added a new chapter on "Comparison of Numerical Results for Various Methods of Adjustment" and also one on "The Primacy of Data Collection." New topics include the Kaplan-Meier product-limit method and the Cox proportional hazards model for analysis of time-related outcomes. An appendix of data from the Framingham Heart Study is used to illustrate the application of various analytical methods to an identical set of real data and provides source material for student exercises. The text has been updated throughout.
This self-contained account of the statistical basis of epidemiology has been written for those with a basic training in biology. It is specifically intended for students enrolled for a masters degree in epidemiology, clinical epidemiology, or biostatistics.
This well-organized and clearly written text has a unique focus on methods of identifying the joint effects of genes and environment on disease patterns. It follows the natural sequence of research, taking readers through the study designs and statistical analysis techniques for determining whether a trait runs in families, testing hypotheses about whether a familial tendency is due to genetic or environmental factors or both, estimating the parameters of a genetic model, localizing and ultimately isolating the responsible genes, and finally characterizing their effects in the population. Examples from the literature on the genetic epidemiology of breast and colorectal cancer, among other diseases, illustrate this process. Although the book is oriented primarily towards graduate students in epidemiology, biostatistics and human genetics, it will also serve as a comprehensive reference work for researchers. Introductory chapters on molecular biology, Mendelian genetics, epidemiology, statistics, and population genetics will help make the book accessible to those coming from one of these fields without a background in the others. It strikes a good balance between epidemiologic study designs and statistical methods of data analysis.