Download Free Stationary Processes And Discrete Parameter Markov Processes Book in PDF and EPUB Free Download. You can read online Stationary Processes And Discrete Parameter Markov Processes and write the review.

This textbook explores two distinct stochastic processes that evolve at random: weakly stationary processes and discrete parameter Markov processes. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. After recapping the essentials from Fourier analysis, the book begins with an introduction to the spectral representation of a stationary process. Topics in ergodic theory follow, including Birkhoff’s Ergodic Theorem and an introduction to dynamical systems. From here, the Markov property is assumed and the theory of discrete parameter Markov processes is explored on a general state space. Chapters cover a variety of topics, including birth–death chains, hitting probabilities and absorption, the representation of Markov processes as iterates of random maps, and large deviation theory for Markov processes. A chapter on geometric rates of convergence to equilibrium includes a splitting condition that captures the recurrence structure of certain iterated maps in a novel way. A selection of special topics concludes the book, including applications of large deviation theory, the FKG inequalities, coupling methods, and the Kalman filter. Featuring many short chapters and a modular design, this textbook offers an in-depth study of stationary and discrete-time Markov processes. Students and instructors alike will appreciate the accessible, example-driven approach and engaging exercises throughout. A single, graduate-level course in probability is assumed.
Topics in Stochastic Processes covers specific processes that have a definite physical interpretation and that explicit numerical results can be obtained. This book contains five chapters and begins with the L2 stochastic processes and the concept of prediction theory. The next chapter discusses the principles of ergodic theorem to real analysis, Markov chains, and information theory. Another chapter deals with the sample function behavior of continuous parameter processes. This chapter also explores the general properties of Martingales and Markov processes, as well as the one-dimensional Brownian motion. The aim of this chapter is to illustrate those concepts and constructions that are basic in any discussion of continuous parameter processes, and to provide insights to more advanced material on Markov processes and potential theory. The final chapter demonstrates the use of theory of continuous parameter processes to develop the Itô stochastic integral. This chapter also provides the solution of stochastic differential equations. This book will be of great value to mathematicians, engineers, and physicists.
This book is concerned with a set of related problems in probability theory that are considered in the context of Markov processes. Some of these are natural to consider, especially for Markov processes. Other problems have a broader range of validity but are convenient to pose for Markov processes. The book can be used as the basis for an interesting course on Markov processes or stationary processes. For the most part these questions are considered for discrete parameter processes, although they are also of obvious interest for continuous time parameter processes. This allows one to avoid the delicate measure theoretic questions that might arise in the continuous parameter case. There is an attempt to motivate the material in terms of applications. Many of the topics concern general questions of structure and representation of processes that have not previously been presented in book form. A set of notes comment on the many problems that are still left open and related material in the literature. It is also hoped that the book will be useful as a reference to the reader who would like an introduction to these topics as well as to the reader interested in extending and completing results of this type.
The theory of Markov chains, although a special case of Markov processes, is here developed for its own sake and presented on its own merits. In general, the hypothesis of a denumerable state space, which is the defining hypothesis of what we call a "chain" here, generates more clear-cut questions and demands more precise and definitive an swers. For example, the principal limit theorem (§§ 1. 6, II. 10), still the object of research for general Markov processes, is here in its neat final form; and the strong Markov property (§ 11. 9) is here always applicable. While probability theory has advanced far enough that a degree of sophistication is needed even in the limited context of this book, it is still possible here to keep the proportion of definitions to theorems relatively low. . From the standpoint of the general theory of stochastic processes, a continuous parameter Markov chain appears to be the first essentially discontinuous process that has been studied in some detail. It is common that the sample functions of such a chain have discontinuities worse than jumps, and these baser discontinuities play a central role in the theory, of which the mystery remains to be completely unraveled. In this connection the basic concepts of separability and measurability, which are usually applied only at an early stage of the discussion to establish a certain smoothness of the sample functions, are here applied constantly as indispensable tools.
This book presents an algebraic development of the theory of countable state space Markov chains with discrete- and continuous-time parameters. A Markov chain is a stochastic process characterized by the Markov prop erty that the distribution of future depends only on the current state, not on the whole history. Despite its simple form of dependency, the Markov property has enabled us to develop a rich system of concepts and theorems and to derive many results that are useful in applications. In fact, the areas that can be modeled, with varying degrees of success, by Markov chains are vast and are still expanding. The aim of this book is a discussion of the time-dependent behavior, called the transient behavior, of Markov chains. From the practical point of view, when modeling a stochastic system by a Markov chain, there are many instances in which time-limiting results such as stationary distributions have no meaning. Or, even when the stationary distribution is of some importance, it is often dangerous to use the stationary result alone without knowing the transient behavior of the Markov chain. Not many books have paid much attention to this topic, despite its obvious importance.
Quantum probability and the theory of operator algebras are both concerned with the study of noncommutative dynamics. Focusing on stationary processes with discrete-time parameter, this book presents (without many prerequisites) some basic problems of interest to both fields, on topics including extensions and dilations of completely positive maps, Markov property and adaptedness, endomorphisms of operator algebras and the applications arising from the interplay of these themes. Much of the material is new, but many interesting questions are accessible even to the reader equipped only with basic knowledge of quantum probability and operator algebras.
A long time ago I started writing a book about Markov chains, Brownian motion, and diffusion. I soon had two hundred pages of manuscript and my publisher was enthusiastic. Some years and several drafts later, I had a thousand pages of manuscript, and my publisher was less enthusiastic. So we made it a trilogy: Markov Chains Brownian Motion and Diffusion Approximating Countable Markov Chains familiarly - MC, B & D, and ACM. I wrote the first two books for beginning graduate students with some knowledge of probability; if you can follow Sections 10.4 to 10.9 of Markov Chains you're in. The first two books are quite independent of one another, and completely independent of the third. This last book is a monograph which explains one way to think about chains with instantaneous states. The results in it are supposed to be new, except where there are specific disclaim ers; it's written in the framework of Markov Chains. Most of the proofs in the trilogy are new, and I tried hard to make them explicit. The old ones were often elegant, but I seldom saw what made them go. With my own, I can sometimes show you why things work. And, as I will VB1 PREFACE argue in a minute, my demonstrations are easier technically. If I wrote them down well enough, you may come to agree.