Download Free Static And Dynamic Neural Networks Book in PDF and EPUB Free Download. You can read online Static And Dynamic Neural Networks and write the review.

Neuronale Netze haben sich in vielen Bereichen der Informatik und künstlichen Intelligenz, der Robotik, Prozeßsteuerung und Entscheidungsfindung bewährt. Um solche Netze für immer komplexere Aufgaben entwickeln zu können, benötigen Sie solide Kenntnisse der Theorie statischer und dynamischer neuronaler Netze. Aneignen können Sie sie sich mit diesem Lehrbuch! Alle theoretischen Konzepte sind in anschaulicher Weise mit praktischen Anwendungen verknüpft. Am Ende jedes Kapitels können Sie Ihren Wissensstand anhand von Übungsaufgaben überprüfen.
A systematic account of artificial neural network paradigms that identifies fundamental concepts and major methodologies. Important results are integrated into the text in order to explain a wide range of existing empirical observations and commonly used heuristics.
This timely overview and synthesis of recent work in both artificial neural networks and neurobiology seeks to examine neurobiological data from a network perspective and to encourage neuroscientists to participate in constructing the next generation of neural networks.
Robust and Fault-Tolerant Control proposes novel automatic control strategies for nonlinear systems developed by means of artificial neural networks and pays special attention to robust and fault-tolerant approaches. The book discusses robustness and fault tolerance in the context of model predictive control, fault accommodation and reconfiguration, and iterative learning control strategies. Expanding on its theoretical deliberations the monograph includes many case studies demonstrating how the proposed approaches work in practice. The most important features of the book include: a comprehensive review of neural network architectures with possible applications in system modelling and control; a concise introduction to robust and fault-tolerant control; step-by-step presentation of the control approaches proposed; an abundance of case studies illustrating the important steps in designing robust and fault-tolerant control; and a large number of figures and tables facilitating the performance analysis of the control approaches described. The material presented in this book will be useful for researchers and engineers who wish to avoid spending excessive time in searching neural-network-based control solutions. It is written for electrical, computer science and automatic control engineers interested in control theory and their applications. This monograph will also interest postgraduate students engaged in self-study of nonlinear robust and fault-tolerant control.
In addition to showing the programmer how to construct Neural Networks, the book discusses the Java Object Oriented Neural Engine (JOONE), a free open source Java neural engine. (Computers)
This book deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical, etc.).
This book treats essentials from neurophysiology (Hodgkin–Huxley equations, synaptic transmission, prototype networks of neurons) and related mathematical concepts (dimensionality reductions, equilibria, bifurcations, limit cycles and phase plane analysis). This is subsequently applied in a clinical context, focusing on EEG generation, ischaemia, epilepsy and neurostimulation. The book is based on a graduate course taught by clinicians and mathematicians at the Institute of Technical Medicine at the University of Twente. Throughout the text, the author presents examples of neurological disorders in relation to applied mathematics to assist in disclosing various fundamental properties of the clinical reality at hand. Exercises are provided at the end of each chapter; answers are included. Basic knowledge of calculus, linear algebra, differential equations and familiarity with MATLAB or Python is assumed. Also, students should have some understanding of essentials of (clinical) neurophysiology, although most concepts are summarized in the first chapters. The audience includes advanced undergraduate or graduate students in Biomedical Engineering, Technical Medicine and Biology. Applied mathematicians may find pleasure in learning about the neurophysiology and clinic essentials applications. In addition, clinicians with an interest in dynamics of neural networks may find this book useful, too.
Neural network control has been a research hotspot in academic fields due to the strong ability of computation. One of its wildly applied fields is robotics. In recent years, plenty of researchers have devised different types of dynamic neural network (DNN) to address complex control issues in robotics fields in reality. Redundant manipulators are no doubt indispensable devices in industrial production. There are various works on the redundancy resolution of redundant manipulators in performing a given task with the manipulator model information known. However, it becomes knotty for researchers to precisely control redundant manipulators with unknown model to complete a cyclic-motion generation CMG task, to some extent. It is worthwhile to investigate the data-driven scheme and the corresponding novel dynamic neural network (DNN), which exploits learning and control simultaneously. Therefore, it is of great significance to further research the special control features and solve challenging issues to improve control performance from several perspectives, such as accuracy, robustness, and solving speed.
Devoted to local and global analysis of weakly connected systems with applications to neurosciences, this book uses bifurcation theory and canonical models as the major tools of analysis. It presents a systematic and well motivated development of both weakly connected system theory and mathematical neuroscience, addressing bifurcations in neuron and brain dynamics, synaptic organisations of the brain, and the nature of neural codes. The authors present classical results together with the most recent developments in the field, making this a useful reference for researchers and graduate students in various branches of mathematical neuroscience.