Download Free State Laws And Regulations On Genetic Disorders Book in PDF and EPUB Free Download. You can read online State Laws And Regulations On Genetic Disorders and write the review.

Raising hopes for disease treatment and prevention, but also the specter of discrimination and "designer genes," genetic testing is potentially one of the most socially explosive developments of our time. This book presents a current assessment of this rapidly evolving field, offering principles for actions and research and recommendations on key issues in genetic testing and screening. Advantages of early genetic knowledge are balanced with issues associated with such knowledge: availability of treatment, privacy and discrimination, personal decision-making, public health objectives, cost, and more. Among the important issues covered: Quality control in genetic testing. Appropriate roles for public agencies, private health practitioners, and laboratories. Value-neutral education and counseling for persons considering testing. Use of test results in insurance, employment, and other settings.
Today, scores of companies, primarily in the United States and Europe, are offering whole genome scanning services directly to the public. The proliferation of these companies and the services they offer demonstrate a public appetite for this information and where the future of genetics may be headed; they also demonstrate the need for serious discussion about the regulatory environment, patient privacy, and other policy implications of direct-to-consumer (DTC) genetic testing. Rapid advances in genetic research already have begun to transform clinical practice and our understanding of disease progression. Existing research has revealed a genetic basis or component for numerous diseases, including Parkinson's disease, Alzheimer's disease, diabetes, heart disease, and several forms of cancer. The availability of the human genome sequence and the HapMap, plummeting costs of high-throughput screening, and increasingly sophisticated computational analyses have led to an explosion of discoveries of linkages between patterns of genetic variation and disease susceptibility. While this research is by no means a straight path toward better public health, improved knowledge of the genetic linkages has the potential to change fundamentally the way health professionals and public health practitioners approach the prevention and treatment of disease. Realizing this potential will require greater sophistication in the interpretation of genetic tests, new training for physicians and other diagnosticians, and new approaches to communicating findings to the public. As this rapidly growing field matures, all of these questions require attention from a variety of perspectives. To discuss some of the foregoing issues, several units of the National Academies held a workshop on August 31 and September 1, 2009, to bring together a still-developing community of professionals from a variety of relevant disciplines, to educate the public and policy-makers about this emerging field, and to identify issues for future study. The meeting featured several invited presentations and discussions on the many technical, legal, policy, and ethical questions that such DTC testing raises, including: (1) overview of the current state of knowledge and the future research trajectory; (2) shared genes and emerging issues in privacy; (3) the regulatory framework; and (4) education of the public and the medical community.
Genome editing is a powerful new tool for making precise alterations to an organism's genetic material. Recent scientific advances have made genome editing more efficient, precise, and flexible than ever before. These advances have spurred an explosion of interest from around the globe in the possible ways in which genome editing can improve human health. The speed at which these technologies are being developed and applied has led many policymakers and stakeholders to express concern about whether appropriate systems are in place to govern these technologies and how and when the public should be engaged in these decisions. Human Genome Editing considers important questions about the human application of genome editing including: balancing potential benefits with unintended risks, governing the use of genome editing, incorporating societal values into clinical applications and policy decisions, and respecting the inevitable differences across nations and cultures that will shape how and whether to use these new technologies. This report proposes criteria for heritable germline editing, provides conclusions on the crucial need for public education and engagement, and presents 7 general principles for the governance of human genome editing.
After discussions with the National Cancer Institute and the Department of Energy the Board on Biology of the National Research Council agreed to run a workshop under the auspices of its Forum on Biotechnology entitled "Privacy Issues in Biomedical and Clinical Research" on November 1, 1997. The organizers want to stress the forum was not intended to cover the full gauntlet of issues concerning Genomics and the Privacy of Medical Records. The emphasis of this forum was to look at pending legislation in Congress (Fall, 1997) and consider, if enacted as written, how this would affect genetic research. The broad language of this legislation written to protect the individual could inadvertently restrict research intended to help these same individuals. Scientific progress requires the sharing of information for the validation of results and the dissemination of gained knowledge to be effective. Other issues which were touched upon in this forum but not fully explored include; the trust of individuals involved in genetic studies in the manner their genetic information could be used, the practice of the generalized "linking" of particular ethnic groups with specific genetic traits, and the potential for positive and negative impact on the quality of life by having knowledge of one's genetic potential. These and other issues which have come upon us in the age of genomics require separate, focused efforts to explore their potential effect on society.
Heritable human genome editing - making changes to the genetic material of eggs, sperm, or any cells that lead to their development, including the cells of early embryos, and establishing a pregnancy - raises not only scientific and medical considerations but also a host of ethical, moral, and societal issues. Human embryos whose genomes have been edited should not be used to create a pregnancy until it is established that precise genomic changes can be made reliably and without introducing undesired changes - criteria that have not yet been met, says Heritable Human Genome Editing. From an international commission of the U.S. National Academy of Medicine, U.S. National Academy of Sciences, and the U.K.'s Royal Society, the report considers potential benefits, harms, and uncertainties associated with genome editing technologies and defines a translational pathway from rigorous preclinical research to initial clinical uses, should a country decide to permit such uses. The report specifies stringent preclinical and clinical requirements for establishing safety and efficacy, and for undertaking long-term monitoring of outcomes. Extensive national and international dialogue is needed before any country decides whether to permit clinical use of this technology, according to the report, which identifies essential elements of national and international scientific governance and oversight.
The dramatic explosion of information brought about by recent advances in genetic research brings welcome scientific knowledge. Yet this new knowledge also raises complex and troubling issues concerning privacy and confidentiality. This thought-provoking book is the first comprehensive exploration of these ethical, legal, and social issues. Distinguished experts in law, medicine, bioethics, public health, science policy, clinical genetics, philosophy, and other fields consider the many contexts in which issues of genetic privacy arise--from research and clinical settings to workplaces, insurance offices, schools, and the courts. The first chapters of this book set out a framework for analyzing genetic privacy and confidentiality, comparing genetic privacy with other forms of medical privacy. Later chapters deal with such topics as concerns that arise in the health care setting (the patient-physician relationship, genetic counseling and privacy); the effect of new technology (the role of commercial genomics, forensic DNA applications); nonmedical uses of genetic information (the law of medical and genetic privacy in the workplace, implications of genetic testing for health and life insurance); and a review of ethics and law in the United States and abroad. In the concluding chapter, Mark A. Rothstein discusses flaws in existing and proposed legislation designed to protect genetic privacy and confidentiality, and he offers a new set of guidelines for policy makers.
This is the revised edition of the casebook, Genetics: Ethics, Law, and Policy, which has been used successfully in law schools in both the seminar and course context. It is authored by three of the nation's leading experts on genetic ethics, law and policy. Students enjoy the course because of the topicality of the subjects, many of which they hear about in the news (gene discoveries, embryo stem cell research). Faculty members enjoy teaching from the book because of the excellent teaching manual and because they can link it to other topics ? the casebook covers issues in health law, employment law, insurance law, criminal law, family law, and other fields. The casebook is supplemented regularly on the TWEN website, so that it is always current. A background in genetics is not required for either students or teachers. The casebook and teachers? manual are written so that the casebook can be used for undergraduate courses or courses for the health professions, for public health, or for public policy.
It has been recognized for almost 200 years that certain families seem to inherit cancer. It is only in the past decade, however, that molecular genetics and epidemiology have combined to define the role of inheritance in cancer more clearly, and to identify some of the genes involved. The causative genes can be tracked through cancer-prone families via genetic linkage and positional cloning. Several of the genes discovered have subsequently been proved to play critical roles in normal growth and development. There are also implications for the families themselves in terms of genetic testing with its attendant dilemmas, if it is not clear that useful action will result. The chapters in The Genetics of Cancer illustrate what has already been achieved and take a critical look at the future directions of this research and its potential clinical applications.