Download Free Staff Working Paper In Economics And Statistics Book in PDF and EPUB Free Download. You can read online Staff Working Paper In Economics And Statistics and write the review.

This book addresses the rising productivity gap between the global frontier and other firms, and identifies a number of structural impediments constraining business start-ups, knowledge diffusion and resource allocation (such as barriers to up-scaling and relatively high rates of skill mismatch).
This SPR Departmental Paper will provide policymakers with a framework for studying changes to national data policy frameworks.
Inflation is regarded by the many as a menace that damages business and can only make life worse for households. Keeping it low depends critically on ensuring that firms and workers expect it to be low. So expectations of inflation are a key influence on national economic welfare. This collection pulls together a galaxy of world experts (including Roy Batchelor, Richard Curtin and Staffan Linden) on inflation expectations to debate different aspects of the issues involved. The main focus of the volume is on likely inflation developments. A number of factors have led practitioners and academic observers of monetary policy to place increasing emphasis recently on inflation expectations. One is the spread of inflation targeting, invented in New Zealand over 15 years ago, but now encompassing many important economies including Brazil, Canada, Israel and Great Britain. Even more significantly, the European Central Bank, the Bank of Japan and the United States Federal Bank are the leading members of another group of monetary institutions all considering or implementing moves in the same direction. A second is the large reduction in actual inflation that has been observed in most countries over the past decade or so. These considerations underscore the critical – and largely underrecognized - importance of inflation expectations. They emphasize the importance of the issues, and the great need for a volume that offers a clear, systematic treatment of them. This book, under the steely editorship of Peter Sinclair, should prove very important for policy makers and monetary economists alike.
This survey assembles recent theoretical and empirical advances in the literature on economic informality and analyzes the causes and costs of informality in developed and developing economies. Using recent evidence, the survey discusses the nature and roots of informal economic activity across countries, distinguishing between informality as the result of exclusion and exit. The survey provides an extensive review of recent international experience with policies aimed at reducing informality, in particular, policies that facilitate the formalization process, create a framework for the transition from informality to formality, lend support to newly created firms, reduce or eliminate inconsistencies across regulation and government agencies, increase information flows, and increase enforcement.
We study whether higher gender equality facilitates economic growth by enabling better allocation of a valuable resource: female labor. By allocating female labor to its more productive use, we hypothesize that reducing gender inequality should disproportionately benefit industries with typically higher female share in their employment relative to other industries. Specifically, we exploit within-country variation across industries to test whether those that typically employ more women grow relatively faster in countries with ex-ante lower gender inequality. The test allows us to identify the causal effect of gender inequality on industry growth in value-added and labor productivity. Our findings show that gender inequality affects real economic outcomes.
This book presents new data to give an overview of shadow economies from OECD countries and propose solutions to prevent illicit work.
Introduction.Big data for twenty-first-century economic statistics: the future is now /Katharine G. Abraham, Ron S. Jarmin, Brian C. Moyer, and Matthew D. Shapiro --Toward comprehensive use of big data in economic statistics.Reengineering key national economic indicators /Gabriel Ehrlich, John Haltiwanger, Ron S. Jarmin, David Johnson, and Matthew D. Shapiro ;Big data in the US consumer price index: experiences and plans /Crystal G. Konny, Brendan K. Williams, and David M. Friedman ;Improving retail trade data products using alternative data sources /Rebecca J. Hutchinson ;From transaction data to economic statistics: constructing real-time, high-frequency, geographic measures of consumer spending /Aditya Aladangady, Shifrah Aron-Dine, Wendy Dunn, Laura Feiveson, Paul Lengermann, and Claudia Sahm ;Improving the accuracy of economic measurement with multiple data sources: the case of payroll employment data /Tomaz Cajner, Leland D. Crane, Ryan A. Decker, Adrian Hamins-Puertolas, and Christopher Kurz --Uses of big data for classification.Transforming naturally occurring text data into economic statistics: the case of online job vacancy postings /Arthur Turrell, Bradley Speigner, Jyldyz Djumalieva, David Copple, and James Thurgood ;Automating response evaluation for franchising questions on the 2017 economic census /Joseph Staudt, Yifang Wei, Lisa Singh, Shawn Klimek, J. Bradford Jensen, and Andrew Baer ;Using public data to generate industrial classification codes /John Cuffe, Sudip Bhattacharjee, Ugochukwu Etudo, Justin C. Smith, Nevada Basdeo, Nathaniel Burbank, and Shawn R. Roberts --Uses of big data for sectoral measurement.Nowcasting the local economy: using Yelp data to measure economic activity /Edward L. Glaeser, Hyunjin Kim, and Michael Luca ;Unit values for import and export price indexes: a proof of concept /Don A. Fast and Susan E. Fleck ;Quantifying productivity growth in the delivery of important episodes of care within the Medicare program using insurance claims and administrative data /John A. Romley, Abe Dunn, Dana Goldman, and Neeraj Sood ;Valuing housing services in the era of big data: a user cost approach leveraging Zillow microdata /Marina Gindelsky, Jeremy G. Moulton, and Scott A. Wentland --Methodological challenges and advances.Off to the races: a comparison of machine learning and alternative data for predicting economic indicators /Jeffrey C. Chen, Abe Dunn, Kyle Hood, Alexander Driessen, and Andrea Batch ;A machine learning analysis of seasonal and cyclical sales in weekly scanner data /Rishab Guha and Serena Ng ;Estimating the benefits of new products /W. Erwin Diewert and Robert C. Feenstra.