Download Free Stability Periodicity And Boundedness In Functional Dynamical Systems On Time Scales Book in PDF and EPUB Free Download. You can read online Stability Periodicity And Boundedness In Functional Dynamical Systems On Time Scales and write the review.

Motivated by recent increased activity of research on time scales, the book provides a systematic approach to the study of the qualitative theory of boundedness, periodicity and stability of Volterra integro-dynamic equations on time scales. Researchers and graduate students who are interested in the method of Lyapunov functions/functionals, in the study of boundedness of solutions, in the stability of the zero solution, or in the existence of periodic solutions should be able to use this book as a primary reference and as a resource of latest findings. This book contains many open problems and should be of great benefit to those who are pursuing research in dynamical systems or in Volterra integro-dynamic equations on time scales with or without delays. Great efforts were made to present rigorous and detailed proofs of theorems. The book should serve as an encyclopedia on the construction of Lyapunov functionals in analyzing solutions of dynamical systems on time scales. The book is suitable for a graduate course in the format of graduate seminars or as special topics course on dynamical systems. The book should be of interest to investigators in biology, chemistry, economics, engineering, mathematics and physics.
Advanced Differential Equations provides coverage of high-level topics in ordinary differential equations and dynamical systems. The book delivers difficult material in an accessible manner, utilizing easier, friendlier notations and multiple examples. Sections focus on standard topics such as existence and uniqueness for scalar and systems of differential equations, the dynamics of systems, including stability, with examples and an examination of the eigenvalues of an accompanying linear matrix, as well as coverage of existing literature. From the eigenvalues' approach, to coverage of the Lyapunov direct method, this book readily supports the study of stable and unstable manifolds and bifurcations. Additional sections cover the study of delay differential equations, extending from ordinary differential equations through the extension of Lyapunov functions to Lyapunov functionals. In this final section, the text explores fixed point theory, neutral differential equations, and neutral Volterra integro-differential equations. - Includes content from a class-tested over multiple years with advanced undergraduate and graduate courses - Presents difficult material in an accessible manner by utilizing easier, friendlier notations, multiple examples and thoughtful exercises of increasing difficulty - Provides content that is appropriate for advanced classes up to, and including, a two-semester graduate course in exploring the theory and applications of ordinary differential equations - Requires minimal background in real analysis and differential equations - Offers a partial solutions manual for student study
Difference Equations and Applications provides unique coverage of high-level topics in the application of difference equations and dynamical systems. The book begins with extensive coverage of the calculus of difference equations, including contemporary topics on l_p stability, exponential stability, and parameters that can be used to qualitatively study solutions to non-linear difference equations, including variations of parameters and equations with constant coefficients, before moving on to the Z-Transform and its various functions, scalings, and applications. It covers systems, Lyapunov functions, and stability, a subject rarely covered in competitor titles, before concluding with a comprehensive section on new variations of parameters. Exercises are provided after each section, ranging from an easy to medium level of difficulty. When finished, students are set up to conduct meaningful research in discrete dynamical systems. In summary, this book is a comprehensive resource that delves into the mathematical theory of difference equations while highlighting their practical applications in various dynamic systems. It is highly likely to be of interest to students, researchers, and professionals in fields where discrete modeling and analysis are essential. - Provides a class-tested resource used over multiple years with advanced undergraduate and graduate courses - Presents difficult material in an accessible manner by utilizing easy, friendly notations, multiple examples, and thoughtful exercises of increasing difficulty - Requires minimal background in real analysis and differential equations - Covers new and evolving topic areas, such as stability, and offers a partial solutions manual for in book exercises
This volume contains the proceedings of the 22nd International Conference on Difference Equations and Applications, held at Osaka Prefecture University, Osaka, Japan, in July 2016. The conference brought together both experts and novices in the theory and applications of difference equations and discrete dynamical systems. The volume features papers in difference equations and discrete dynamical systems with applications to mathematical sciences and, in particular, mathematical biology and economics. This book will appeal to researchers, scientists, and educators who work in the fields of difference equations, discrete dynamical systems, and their applications.
The book presents the proceedings of the 23rd International Conference on Difference Equations and Applications, ICDEA 2017, held at the West University of Timișoara, Romania, under the auspices of the International Society of Difference Equations (ISDE), July 24 - 28, 2017. It includes new and significant contributions in the field of difference equations, discrete dynamical systems and their applications in various sciences. Disseminating recent studies and related results and promoting advances, the book appeals to PhD students, researchers, educators and practitioners in the field.
This book is devoted to the qualitative theory of functional dynamic equations on time scales, providing an overview of recent developments in the field as well as a foundation to time scales, dynamic systems, and functional dynamic equations. It discusses functional dynamic equations in relation to mathematical physics applications and problems, providing useful tools for investigation for oscillations and nonoscillations of the solutions of functional dynamic equations on time scales. Practice problems are presented throughout the book for use as a graduate-level textbook and as a reference book for specialists of several disciplines, such as mathematics, physics, engineering, and biology.
​This book comprises selected papers of the 26th International Conference on Difference Equations and Applications, ICDEA 2021, held virtually at the University of Sarajevo, Bosnia and Herzegovina, in July 2021. The book includes the latest and significant research and achievements in difference equations, discrete dynamical systems, and their applications in various scientific disciplines. The book is interesting for Ph.D. students and researchers who want to keep up to date with the latest research, developments, and achievements in difference equations, discrete dynamical systems, and their applications, the real-world problems.
On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.
An authoritative treatment by leading researchers covering theory and optimal estimation, along with practical applications.
The latest advancements in time scale calculus are the focus of this book. New types of time-scale integral transforms are discussed in the book, along with how they can be used to solve dynamic equations. Novel numerical techniques for partial dynamic equations on time scales are described. New time scale inequalities for exponentially convex functions are introduced as well.