Download Free Stability Of Kam Tori For Nonlinear Schrodinger Equation Book in PDF and EPUB Free Download. You can read online Stability Of Kam Tori For Nonlinear Schrodinger Equation and write the review.

The authors prove the long time stability of KAM tori (thus quasi-periodic solutions) for nonlinear Schrödinger equation subject to Dirichlet boundary conditions , where is a real Fourier multiplier. More precisely, they show that, for a typical Fourier multiplier , any solution with the initial datum in the -neighborhood of a KAM torus still stays in the -neighborhood of the KAM torus for a polynomial long time such as for any given with , where is a constant depending on and as .
The authors examine the semicrossed products of a semigroup action by -endomorphisms on a C*-algebra, or more generally of an action on an arbitrary operator algebra by completely contractive endomorphisms. The choice of allowable representations affects the corresponding universal algebra. The authors seek quite general conditions which will allow them to show that the C*-envelope of the semicrossed product is (a full corner of) a crossed product of an auxiliary C*-algebra by a group action. Their analysis concerns a case-by-case dilation theory on covariant pairs. In the process we determine the C*-envelope for various semicrossed products of (possibly nonselfadjoint) operator algebras by spanning cones and lattice-ordered abelian semigroups.
Several stochastic processes related to transient Lévy processes with potential densities , that need not be symmetric nor bounded on the diagonal, are defined and studied. They are real valued processes on a space of measures endowed with a metric . Sufficient conditions are obtained for the continuity of these processes on . The processes include -fold self-intersection local times of transient Lévy processes and permanental chaoses, which are `loop soup -fold self-intersection local times' constructed from the loop soup of the Lévy process. Loop soups are also used to define permanental Wick powers, which generalizes standard Wick powers, a class of -th order Gaussian chaoses. Dynkin type isomorphism theorems are obtained that relate the various processes. Poisson chaos processes are defined and permanental Wick powers are shown to have a Poisson chaos decomposition. Additional properties of Poisson chaos processes are studied and a martingale extension is obtained for many of the processes described above.
The effects of weak and strong advection on the dynamics of reaction-diffusion models have long been studied. In contrast, the role of intermediate advection remains poorly understood. For example, concentration phenomena can occur when advection is strong, providing a mechanism for the coexistence of multiple populations, in contrast with the situation of weak advection where coexistence may not be possible. The transition of the dynamics from weak to strong advection is generally difficult to determine. In this work the authors consider a mathematical model of two competing populations in a spatially varying but temporally constant environment, where both species have the same population dynamics but different dispersal strategies: one species adopts random dispersal, while the dispersal strategy for the other species is a combination of random dispersal and advection upward along the resource gradient. For any given diffusion rates the authors consider the bifurcation diagram of positive steady states by using the advection rate as the bifurcation parameter. This approach enables the authors to capture the change of dynamics from weak advection to strong advection. The authors determine three different types of bifurcation diagrams, depending on the difference of diffusion rates. Some exact multiplicity results about bifurcation points are also presented. The authors' results can unify some previous work and, as a case study about the role of advection, also contribute to the understanding of intermediate (relative to diffusion) advection in reaction-diffusion models.
he authors introduce and study the notions of hyperbolically embedded and very rotating families of subgroups. The former notion can be thought of as a generalization of the peripheral structure of a relatively hyperbolic group, while the latter one provides a natural framework for developing a geometric version of small cancellation theory. Examples of such families naturally occur in groups acting on hyperbolic spaces including hyperbolic and relatively hyperbolic groups, mapping class groups, , and the Cremona group. Other examples can be found among groups acting geometrically on spaces, fundamental groups of graphs of groups, etc. The authors obtain a number of general results about rotating families and hyperbolically embedded subgroups; although their technique applies to a wide class of groups, it is capable of producing new results even for well-studied particular classes. For instance, the authors solve two open problems about mapping class groups, and obtain some results which are new even for relatively hyperbolic groups.
This is the second paper in the series of papers dedicated to the study of natural cluster structures in the rings of regular functions on simple complex Lie groups and Poisson–Lie structures compatible with these cluster structures. According to our main conjecture, each class in the Belavin–Drinfeld classification of Poisson–Lie structures on corresponds to a cluster structure in . The authors have shown before that this conjecture holds for any in the case of the standard Poisson–Lie structure and for all Belavin–Drinfeld classes in , . In this paper the authors establish it for the Cremmer–Gervais Poisson–Lie structure on , which is the least similar to the standard one.
Using Dwork's theory, the authors prove a broad generalization of his famous -adic formal congruences theorem. This enables them to prove certain -adic congruences for the generalized hypergeometric series with rational parameters; in particular, they hold for any prime number and not only for almost all primes. Furthermore, using Christol's functions, the authors provide an explicit formula for the “Eisenstein constant” of any hypergeometric series with rational parameters. As an application of these results, the authors obtain an arithmetic statement “on average” of a new type concerning the integrality of Taylor coefficients of the associated mirror maps. It contains all the similar univariate integrality results in the literature, with the exception of certain refinements that hold only in very particular cases.
The authors study imaginary representations of the Khovanov-Lauda-Rouquier algebras of affine Lie type. Irreducible modules for such algebras arise as simple heads of standard modules. In order to define standard modules one needs to have a cuspidal system for a fixed convex preorder. A cuspidal system consists of irreducible cuspidal modules—one for each real positive root for the corresponding affine root system X , as well as irreducible imaginary modules—one for each -multiplication. The authors study imaginary modules by means of “imaginary Schur-Weyl duality” and introduce an imaginary analogue of tensor space and the imaginary Schur algebra. They construct a projective generator for the imaginary Schur algebra, which yields a Morita equivalence between the imaginary and the classical Schur algebra, and construct imaginary analogues of Gelfand-Graev representations, Ringel duality and the Jacobi-Trudy formula.
This monograph is devoted to the proof of two related results. The first one asserts that if is a Radon measure in satisfyingfor -a.e. , then is rectifiable. Since the converse implication is already known to hold, this yields the following characterization of rectifiable sets: a set with finite -dimensional Hausdorff measure is rectifiable if and only ifH^1x2EThe second result of the monograph deals with the relationship between the above square function in the complex plane and the Cauchy transform . Assuming that has linear growth, it is proved that is bounded in if and only iffor every square .
In the past 50 years, quantum physicists have discovered, and experimentally demonstrated, a phenomenon which they termed superoscillations. Aharonov and his collaborators showed that superoscillations naturally arise when dealing with weak values, a notion that provides a fundamentally different way to regard measurements in quantum physics. From a mathematical point of view, superoscillating functions are a superposition of small Fourier components with a bounded Fourier spectrum, which result, when appropriately summed, in a shift that can be arbitrarily large, and well outside the spectrum. The purpose of this work is twofold: on one hand the authors provide a self-contained survey of the existing literature, in order to offer a systematic mathematical approach to superoscillations; on the other hand, they obtain some new and unexpected results, by showing that superoscillating sequences can be seen of as solutions to a large class of convolution equations and can therefore be treated within the theory of analytically uniform spaces. In particular, the authors will also discuss the persistence of the superoscillatory behavior when superoscillating sequences are taken as initial values of the Schrödinger equation and other equations.