Download Free Stability Of Differential Equations With Aftereffect Book in PDF and EPUB Free Download. You can read online Stability Of Differential Equations With Aftereffect and write the review.

Stability of Differential Equations with Aftereffect presents stability theory for differential equations concentrating on functional differential equations with delay, integro-differential equations, and related topics. The authors provide background material on the modern theory of functional differential equations and introduce some new flexible methods for investigating the asymptotic behaviour of solutions to a range of equations. The treatment also includes some results from the authors' research group based at Perm and provides a useful reference text for graduates and researchers working in mathematical and engineering science.
This book provides an introduction to the structure and stability properties of solutions of functional differential equations. Numerous examples of applications (such as feedback systrems with aftereffect, two-reflector antennae, nuclear reactors, mathematical models in immunology, viscoelastic bodies, aeroautoelastic phenomena and so on) are considered in detail. The development is illustrated by numerous figures and tables.
The book discusses set-valued differential equations defined in terms of the Hukuhara derivative. Focusing on equations with uncertainty, i.e., including an unknown parameter, it introduces a regularlization method to handle them. The main tools for qualitative analysis are the principle of comparison of Chaplygin – Wazhewsky, developed for the scalar, vector and matrix-valued Lyapunov functions and the method of nonlinear integral inequalities, which are used to establish existence, stability or boundedness. Driven by the question of how to model real processes using a set-valued of differential equations, the book lays the theoretical foundations for further study in this area. It is intended for experts working in the field of qualitative analysis of differential and other types of equations.
Nonlinear systems with random structures arise quite frequently as mathematical models in diverse disciplines. This monograph presents a systematic treatment of stability theory and the theory of stabilization of nonlinear systems with random structure in terms of new developments in the direct Lyapunov's method. The analysis focuses on dynamic sys
This volume provides an introduction to the properties of functional differential equations and their applications in diverse fields such as immunology, nuclear power generation, heat transfer, signal processing, medicine and economics. In particular, it deals with problems and methods relating to systems having a memory (hereditary systems). The book contains eight chapters. Chapter 1 explains where functional differential equations come from and what sort of problems arise in applications. Chapter 2 gives a broad introduction to the basic principle involved and deals with systems having discrete and distributed delay. Chapters 3-5 are devoted to stability problems for retarded, neutral and stochastic functional differential equations. Problems of optimal control and estimation are considered in Chapters 6-8. For applied mathematicians, engineers, and physicists whose work involves mathematical modeling of hereditary systems. This volume can also be recommended as a supplementary text for graduate students who wish to become better acquainted with the properties and applications of functional differential equations.
Linear nonautonomous equations arise as mathematical models in mechanics, chemistry, and biology. The investigation of bounded solutions to systems of differential equations involves some important and challenging problems of perturbation theory for invariant toroidal manifolds. This monograph is a detailed study of the application of Lyapunov func
Deterministic and stochastic control systems with aftereffect are considered. Necessary and sufficient conditions for the optimality of such systems are obtained. Various methods for the construction of exact and approximate solutions of optimal control problems are suggested. Problems of adaptive control for systems with aftereffect are analyzed. Numerous applications are described. The book can be used by researchers, engineers, and graduate students working in optimal control theory and various applications.
This volume comprises selected papers presented at the Volterra Centennial Symposium and is dedicated to Volterra and the contribution of his work to the study of systems - an important concept in modern engineering. Vito Volterra began his study of integral equations at the end of the nineteenth century and this was a significant development in th